L A Samaniego

Learn More
The immediate-early (IE) proteins of herpes simplex virus (HSV) function on input genomes and affect many aspects of host cell metabolism to ensure the efficient expression and regulation of the remainder of the genome and, subsequently, the production of progeny virions. Due to the many and varied effects of IE proteins on host cell metabolism, their(More)
ICP4, ICP0, and ICP27 are the immediate-early (IE) regulatory proteins of herpes simplex virus that have the greatest effect on viral gene expression and growth. Comparative analysis of viral mutants defective in various subsets of these IE genes should help elucidate how these proteins affect cellular and viral processes. This study focuses on the mutant(More)
Two of the five immediate-early gene products, ICP4 and ICP27, expressed by herpes simplex virus type 1 have profound effects on viral gene expression and are absolutely essential for virus replication. Functional interactions between ICP4 and ICP27 may contribute to establishing the program of viral gene expression that ensues during lytic infection. To(More)
Replication defective mutants of HSV have been proposed both as vaccine candidates and as vehicles for gene therapy because of their inability to produce infectious progeny. The immunogenicity of these HSV replication mutants, at both qualitative and quantitative levels, will directly determine their effectiveness for either of these applications. We have(More)
The immediate-early 2 (IE2) 86-kDa polypeptide, a major immediate-early gene product of human cytomegalovirus, regulates transcription both positively and negatively. We report two new properties of the IE2 86-kDa polypeptide in infected cells. Immunoprecipitation of infected cell proteins from human embryonic lung cells by antipeptide or monoclonal(More)
  • 1