Learn More
A gamma-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each(More)
The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterised with high temporal and(More)
Laser plasma interferograms are currently analyzed by extraction of the phase-shift map with fast Fourier transform (FFT) techniques [Appl. Opt. 18, 3101 (1985)]. This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail to produce accurate phase-shift maps when low-quality(More)
The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, is experimentally investigated. Ultrahigh contrast (~10(12)) pulses allow us to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultrahigh intensity >10(19) W/cm(2). A maximum increase by a factor of(More)
The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (~10(19) W/cm(2)) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining(More)
Electron-positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of(More)
Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray(More)
The interaction of an ultraintense, 30-fs laser pulse with a preformed plasma was investigated as a method of producing a beam of high-energy electrons. We used thin foil targets that are exploded by the laser amplified spontaneous emission preceding the main pulse. Optical diagnostics show that the main pulse interacts with a plasma whose density is well(More)
Fast electrons produced by a 10 ps, 160 J laser pulse through laser-compressed plastic cylinders are studied experimentally and numerically in the context of fast ignition. K(α)-emission images reveal a collimated or scattered electron beam depending on the initial density and the compression timing. A numerical transport model shows that implosion-driven(More)
We have characterized the plasma produced by a picosecond laser pulse using x-ray spectroscopy. High-resolution high-sensitivity spectra of K -shell emission from a Ti plasma have been obtained, showing a strong contribution from multiply ionized ions. Hydrodynamic and collisional-radiative codes are used to extract the plasma temperature and density from(More)