Learn More
The contribution of regulatory versus protein change to adaptive evolution has long been controversial. In principle, the rate and strength of adaptation within functional genetic elements can be quantified on the basis of an excess of nucleotide substitutions between species compared to the neutral expectation or from effects of recent substitutions on(More)
We develop an inference method that uses approximate Bayesian computation (ABC) to simultaneously estimate mutational parameters and selective constraint on the basis of nucleotide divergence for protein-coding genes between pairs of species. Our simulations explicitly model CpG hypermutability and transition vs. transversion mutational biases along with(More)
Giving access to sequence and annotation data for genome assemblies is important because, while facilitating research, it places both assembly and annotation quality under scrutiny, resulting in improvements to both. Therefore we announce Avianbase, a resource for bird genomics, which provides access to data released by the Avian Phylogenomics Consortium.
  • 1