Learn More
Highly configurable metamodeling environments and graph transformation techniques have been applied successfully in software system modeling and other areas. In this paper a uniform treatment of these two methods is illustrated by a tool called Visual Modeling and Transformation System. The concepts of an n-layer metamodeling environment is outlined with(More)
Graph transformation has been widely used for expressing model transformations. Especially transformations of visual models can be naturally formulated by graph transformations, since graphs are well suited to describe the underlying structures of models. Based on a common sample model transformation, four different model transformation approaches are(More)
Verification of models and model processing programs are inevitable in real-world model-based software development. Model transformation developers are interested in offline verification methods, when only the definition of the model transformation and the metamodels of the source and target languages are used to analyze the properties and no concrete input(More)
Model transformation means converting an input model available at the beginning of the transformation process to an output model. A widely used approach to model transformation uses graph rewriting as the underlying transformation technique. In case of diagrammatic languages, such as the Unified Modeling Language (UML), the exclusive topological matching is(More)
Model-driven Software Engineering is one of the most focused research fields. Model processors automatically generate the lower level artefacts. Graph transformation is a widely used technique for model transformations. Especially visual model transformations can be expressed by graph transformations. This paper presents a visual control flow support of the(More)
Model-Driven Architecture standardized by OMG facilitates separating the platform-independent part (PIM) and the platform-specific part (PSM) of a system model. The platform-independent artifacts are mainly UML models created with CASE tools. Due to this separation, PIM specified by the developers can be reused across several implementation platforms of the(More)
Model-Driven Architecture (MDA) standardized by OMG facilitates to separate the platform independent part and the platform specific part of a system model. Due to this separation Platform-Independent Model (PIM) can be reused across several implementation platforms of the system. Platform-Specific Model (PSM) is ideally generated automatically from PIM via(More)