László Kohidai

Learn More
The unicellular Tetrahymena pyriformis was studied for chemotaxis, chemotactic selection, phagocytosis, growth and body shape changes in the presence of water soluble (beta-cyclodextrin-coupled) steroid hormones (testosterone, estradiol, progesterone, hydrocortisone and dexamethasone). Testosterone was chemoattractant over a wide range of concentrations,(More)
The chemotactic effects of six formylated, putatively bacterial peptides (fMLP, fMLPP, fMMM, fMP, fMV, and fMS) were studied. From the set of six peptides, only fMLP (one of the most effective chemoattractant peptides in mammals) elicited a significant positive chemotactic response in the eukaryotic ciliate Tetrahymena pyriformis, while the other formylated(More)
The chemotactic character of the nonapeptide bradykinin (BK1-9) and its derivatives was studied in the eukaryotic ciliated model Tetrahymena pyriformis. The results demonstrate that BK1-9 has a direct and ligand-specific chemoattractant effect (maximal at 10(-11) m) without any intermediate substance as is essential in some mammalian test systems.(More)
Chemotactic properties of the leukocyte chemoattractant N-formyl-Norleucine-Leucine-Phenylalanine (NLP) and its antagonist N-t-BOC-Norleucine-Leucine-Phenylalanine (BOC-NLP) were investigated in unicellular Tetrahymena pyriformis cells. NLP express its attractant character in a two-peak profile of concentration course (maximum at 10(-8)-10(-7) M and 10(-11)(More)
Chemotactic selection is a method by which populations of cells exposed to ligands can be isolated and subsequently cultivated. We used Tetrahymena pyriformis GL cultures selected by chemotactic selection to insulin (10 nM), histamine (0.1 nM) and di-iodotyrosine (T2, 10 nM) to study the phagocytotic capacity under the induction of selector hormones. Our(More)
An increasing attention is paid to the potential harmful effects of aquatic contaminant pharmaceuticals exerted on both biosystems and humans. In the present work the effects of 14 pharmaceuticals including NSAIDs, antibiotics, β-blockers and a frequently used X-ray contrast media on the proliferation and migratory behavior of the freshwater ciliate(More)
We induce artificial magnetotaxis in Tetrahymena pyriformis, a eukaryotic ciliate, using ferro-magnetic nanoparticles and an external time-varying magnetic field. Magnetizing internalized iron oxide particles ͑magnetite͒, allows control of the swimming direction of an individual cell using two sets of electromagnets. Real-time feedback control was performed(More)
A eukaryotic ciliate, Tetrahymena pyriformis, has been controlled using galvanotaxis and phototaxis in a low Reynolds number fluidic environment. A cell-tracking algorithm demonstrates the controllability of Tetrahymena pyriformis under two types of external stimuli. Electrical stimulation, in the form of a direct current electric field through the(More)
The formyl peptide receptors (FPRs) are a family of chemoattractant receptors with important roles in host defense and the regulation of inflammatory reactions. In humans, three FPR paralogs have been identified (FPR1, FPR2, and FPR3) and may have functionally diversified by gene duplication and adaptive evolution. However, the evolutionary mechanisms(More)