Learn More
BACKGROUND Obtaining quantitative predictions for cellular metabolic activities requires the identification and modeling of the physicochemical constraints that are relevant at physiological growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it limits the solvent capacity available to metabolic enzymes. (More)
Knowledge of tumor-specific metabolic pathway flux, obtainable via the emerging tool of stable isotope-based dynamic metabolic profiling (SIDMAP), identifies metabolic enzyme drug targets which might help to overcome difficulties related to resistance to currently evolving targeted therapies against more narrowly conceived gene or protein targets. An(More)
Tumor cells respond to growth signals by the activation of protein kinases, altered gene expression and significant modifications in substrate flow and re-distribution among biosynthetic pathways. This results in a proliferating phenotype with altered cellular function. These transformed cells exhibit unique anabolic characteristics, which includes(More)
Recent observations on cancer cell metabolism indicate increased serine synthesis from glucose as a marker of poor prognosis. We have predicted that a fraction of the synthesized serine is routed to a pathway for ATP production. The pathway is composed by reactions from serine synthesis, one-carbon (folate) metabolism and the glycine cleavage system (SOG(More)
BACKGROUND A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia.(More)
Comprehensive analysis of the metabolome can contribute to mechanism of action studies for small molecules discovered in phenotypic screens. Examples are presented in this overview of the rapidly developing field of "metabolic profiling." These examples include the use of NMR in gene function analysis, GC-based studies on the identification of metabolic(More)
Inhibitors of glycogen breakdown regulate glucose homeostasis by limiting glucose production in diabetes. Here we demonstrate that restrained glycogen breakdown also inhibits cancer cell proliferation and induces apoptosis through limiting glucose oxidation, as well as nucleic acid and de novo fatty acid synthesis. Increasing doses (50-100 microM) of the(More)
The development of obesity is becoming an international problem and the role of fructose is unclear. Studies using liver tissue and hepatocytes have contributed to the understanding of fructose metabolism. Excess fructose consumption also affects extra hepatic tissues including adipose tissue. The effects of fructose on human adipocytes are not yet fully(More)
Metformin, a generic glucose lowering drug, inhibits cancer growth expressly in models that employ high fat/cholesterol intake and/or low glucose availability. Here we use a targeted tracer fate association study (TTFAS) to investigate how cholesterol and metformin administration regulates glucose-derived intermediary metabolism and macromolecule synthesis(More)
The mitochondrial membrane protein termed ''mitoNEET,'' is a putative secondary target for insulin-sensitizing thiazolid-inedione (TZD) compounds but its role in regulating metabolic flux is not known. PNU-91325 is a thiazolidinedione derivative which exhibits high binding affinity to mitoNEET and lowers cholesterol, fatty acid and blood glucose levels in(More)