Learn More
Ischemia-associated oxidative damage leading to necrosis is a major cause of catastrophic tissue loss, and elucidating its signaling mechanism is therefore of paramount importance. p53 is a central stress sensor responding to multiple insults, including oxidative stress to orchestrate apoptotic and autophagic cell death. Whether p53 can also activate(More)
Ischemic stroke induces neuronal death in the core of the infarct within a few hours and the secondary damage in the surrounding regions over a long period of time. Reduction of inflammation using pharmacological reagents has become a target of research for the treatment of stroke. Cyclooxygenase 2 (COX-2), a marker of inflammation, is induced during stroke(More)
Microglia are the immunocompetent cells of the central nervous system. In the physiological setting, their highly motile processes continually survey the local brain parenchyma and transiently contact synaptic elements. Although recent work has shown that the interaction of microglia with synapses contributes to synaptic remodeling during development, the(More)
Advanced technologies and biomaterials developed for tissue engineering and regenerative medicine present tractable biomimetic systems with potential applications for cancer research. Recently, the National Cancer Institute convened a Strategic Workshop to explore the use of tissue biomanufacturing for development of dynamic, physiologically relevant in(More)
Synaptic plasticity is critical for elaboration and adaptation in the developing and developed brain. It is well established that astrocytes play an important role in the maintenance of what has been dubbed "the tripartite synapse". Increasing evidence shows that a fourth cell type, microglia, is critical to this maintenance as well. Microglia are the(More)
THE INFLAMMATION THAT ACCOMPANIES ACUTE INJURY HAS DUAL FUNCTIONS: bactericidal action and repair. Bactericidal functions protect damaged tissue from infection, and repair functions are initiated to aid in the recovery of damaged tissue. Brain injury is somewhat different from injuries in other tissues in two respects. First, many cases of brain injury are(More)
Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been(More)
Microglia are active players in inflammation, but also have important supporting roles in CNS maintenance and function, including modulation of neuronal activity. We previously observed an increase in the frequency of excitatory postsynaptic current in organotypic brain slices after depletion of microglia using clodronate. Here, we describe that local(More)
Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc(More)
Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the(More)