Kyung Hyun Min

Learn More
Hyaluronic acid nanoparticles (HA-NPs), which are formed by the self-assembly of hydrophobically modified HA derivatives, were prepared to investigate their physicochemical characteristics and fates in tumor-bearing mice after systemic administration. The particle sizes of HA-NPs were controlled in the range of 237-424 nm by varying the degree of(More)
Calcium phosphate-reinforced photosensitizer-loaded polymer nanoparticles have been developed for photodynamic therapy. Chlorin e6 (Ce6)-loaded core-shell-corona polymer micelles of poly(ethylene glycol)-b-poly(L-aspartic acid)-b-poly(L-phenylalanine) (PEG-PAsp-PPhe) were employed as template nanoparticles for mineralization with calcium phosphate (CaP).(More)
To prepare a water-insoluble camptothecin (CPT) delivery carrier, hydrophobically modified glycol chitosan (HGC) nanoparticles were constructed by chemical conjugation of hydrophobic 5beta-cholanic acid moieties to the hydrophilic glycol chitosan backbone. Insoluble anticancer drug, CPT, was easily encapsulated into HGC nanoparticles by a dialysis method(More)
Development of successful formulations for poorly water-soluble drugs remains a longstanding critical and challenging issue in cancer therapy. As a potential drug carrier of paclitaxel, hydrotropic oligomer-glycol chitosan (HO-GC) was synthesized by chemical conjugation of the N,N-diethylnicotinamide-based oligomer, uniquely designed for enhancing the(More)
New basal insulin formulation was designed and their structural characteristics were investigated in vitro and biological activities in type 1 diabetic rats. Zinc-crystallized insulin was physically loaded into hydrophobically modified glycol chitosan (HGC) nanoparticles by a dialysis method. The series of insulin-HGC formulations were prepared with(More)
Herein, we evaluated the tumoral low pH targeting characteristics of pH-responsive polymer micelles in cancer targeting therapy. To design the pH-responsive polymeric micelles, hydrophilic methyl ether poly(ethylene glycol) (MPEG) and pH-responsive/biodegradable poly(beta-amino ester) (PAE) were copolymerized using a Michael-type step polymerization,(More)
Enhanced drug-loading and therapeutic efficacies are highly essential properties for nanoparticles as tumor-targeting drug carriers. Herein, we developed the glycol chitosan nanoparticles with hydrotropic oligomers (HO-CNPs) as a new tumor targeting drug delivery system. For enhancing drug-loading efficiency of paclitaxel in drug carriers, hydrotropic(More)
Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a(More)