Learn More
BACKGROUND In synthetic biology, gene regulatory circuits are often constructed by combining smaller circuit components. Connections between components are achieved by transcription factors acting on promoters. If the individual components behave as true modules and certain module interface conditions are satisfied, the function of the composite circuits(More)
Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for(More)
In this work we focus on how noise propagates in biochemical reaction networks and affects sensitivities of the system. We discover that the stochastic fluctuations can enhance sensitivities in one region of the value of control parameters by reducing sensitivities in another region. Based on this compensation principle, we designed a concentration detector(More)
A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present(More)
We investigate how stochastic reaction processes are affected by external perturbations. We describe an extension of the deterministic metabolic control analysis (MCA) to the stochastic regime. We introduce stochastic sensitivities for mean and covariance values of reactant concentrations and reaction fluxes and show that there exist MCA-like summation(More)
Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades(More)
— In gene regulatory networks, transcription factors regulate downstream sites by binding or unbinding to specific promoter regions. It is known that the binding-unbinding process can affect factor life times, and thus response times. This change in the dynamical properties depends on the number of sites that the transcription factor binds to as well as the(More)
Intracellular protein copy numbers show significant cell-to-cell variability within an isogenic population due to the random nature of biological reactions. Here we show how the variability in copy number can be controlled by perturbing gene expression. Depending on the genetic network and host, different perturbations can be applied to control variability.(More)