Kyung Cheol Choi

Learn More
We present a surface plasmon-mediated energy transfer based on an organic light-emitting device structure. In order to localize surface plasmons, silver nano clusters were deposited thermally close to the cathode with a 1-nm-thick LiF spacer. It was shown that the surface plasmon formed on the silver nano cluster provides a strong donor decay channel and(More)
The newly designed plasma display with the cylindrical hollow cathode has been proposed and investigated to study the relationship between the photoluminous efficiency and the discharge characteristics. The photoluminous efficiency and the discharge characteristics are dependent on the geometry factors of cylindrical hollow cathode and gas pressure in the(More)
We elucidate that the luminescence from Eu3+-doped phosphor excited by the electron collision can be modified on location near the metallic nanoparticles. The Eu3+-doped phosphor was fabricated on the nanoscaled Ag particles ranging of 5 nm to 30 nm diameter. As a result of the cathodoluminescence measurements, the phosphor films on the Ag particles showed(More)
The temperature-dependent characteristics of ac plasma display panels (PDPs) are investigated, based on various case studies using a conventional driving scheme with reset pulses. Though the main factor of the thermal effects is caused by strong sustain discharges, it is not only caused by the panel characteristics, but also by the temperature-dependent(More)
In this paper, in contrast with previously reported approaches, we suggest exploiting a microcavity effect using nanoparticles to improve the optical efficiency of organic light-emitting diodes (OLED). The method to input the nanoparticles inside the OLED device is simple and cost effective by virtue of employing a solution process using a spin coating(More)
A transparent paper made of chitin nanofibers (ChNF) is introduced and its utilization as a substrate for flexible organic light-emitting diodes is demonstrated. Given its promising macroscopic properties, biofriendly characteristics, and availability of the raw material, the utilization of the ChNF transparent paper as a structural platform for flexible(More)
The visible emission of BaMgAl(10)O(17):Eu(2+) used for White LED and ACPDPs was enhanced by coupling electric transition with the localized surface plasmon oscillation of nanoscaled Ag particles. Phosphor films including Ag particles were prepared by the spin-coating method. Up to a 36% enhancement of the peak intensity, which was dependent on the(More)
We demonstrate the optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm to create a highly efficient emitting layer in mirror-type self-emissive displays. The propagating surface plasmon mode induced between the dielectric layer (MgO) and the Ag nanofilm activates the electric dipole transition of Eu3+ ions. The transmittance of a(More)
Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model,(More)