Kyujung Kim

Learn More
A nanowire-based localized surface plasmon resonance (LSPR) biosensor has been investigated to evaluate the impact of design parameters of nanowires on the excitation of localized surface plasmons (LSPs) and the sensitivity enhancement of a LSPR biosensor. The results based on rigorous coupled wave analysis and finite difference time domain method indicate(More)
Receptor-mediated endocytosis is essential for targeted gene/drug delivery to a specific cell type. In this study, we developed a capacitance sensor to monitor receptor-mediated endocytosis in real time. The capacitance sensor was able to detect a capacitance peak in different cell lines during the internalization of adenoviruses or antibodies via(More)
Sub-diffraction-limited imaging of fluorescent monomers on sliding microtubules in vitro by nanoscale localization sampling (NLS) is reported. NLS is based on periodic nanohole antenna arrays that create locally amplified electromagnetic hot spots through surface plasmon localization. The localized near-field hot spot temporally samples microtubular(More)
In this Letter, we explore plasmonics-based spatially activated light microscopy (PSALM) for sub-diffraction-limited imaging of biomolecules. PSALM is based on the spatially switched activation of local amplified electromagnetic hot spots under multiple light incidence conditions. The hot spots are associated with surface plasmons that are excited and(More)
We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that(More)
We have investigated surface-enhanced plasmon resonance detection of DNA hybridization. Surface enhancement was based on the excitation of localized surface plasmon using subwavelength nanogratings, at a 300 nm period, coated with 24-mer ssDNA oligonucleotide, while optical signatures of DNA were amplified at the same time by gold nanoparticles conjugated(More)
We investigated evanescent field enhancement based on subwavelength nanogratings for improved sensitivity in total internal reflection microscopy of live cells. The field enhancement is associated with subwavelength-grating-coupled plasmon excitation. An optimum sample employed a silver grating on a silver film and an SF10 glass substrate. Field intensity(More)
We investigated experimentally the evanescent field enhancement based on dielectric thin films in total internal reflection microscopy. The sample employed two layers of Al2O3 and SiO2 deposited on an SF10 glass substrate. Field intensity enhancement measured by fluorescent excitation of microbeads relative to that of a control sample without dielectric(More)