Kyriaki Manoli

  • Citations Per Year
Learn More
The functioning principles of electronic sensors based on organic semiconductor field-effect transistors (OFETs) are presented. The focus is on biological sensors but also chemical ones are reviewed to address general features. The field-induced electronic transport and the chemical and biological interactions for the sensing, each occurring at the relevant(More)
We report on the use of a polyanionic proton conductor, poly(acrylic acid), to gate a poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]-based organic field-effect transistor (OFET). A planar configuration of the OFET is evaluated, and the electrical performance and implementation on a flexible substrate are discussed.
Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with(More)
Bottom- and top-contact organic thin film transistors (OTFTs) were fabricated, using poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C16) as p-type channel semiconductors. Four different types of OTFTs were fabricated and investigated as gas sensors against three volatile organic compounds,(More)
Differentiation of enantiomers remains one of the most attractive and important research areas in analytical chemistry due to its impact on pharmaceutical, chemical, biotechnology, and food industries. For a long time chiral separation techniques, such as high performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis(More)
Thin-film transistors can be used as high-performance bioelectronic devices to accomplish tasks such as sensing or controlling the release of biological species as well as transducing the electrical activity of cells or even organs, such as the brain. Organic, graphene, or zinc oxide are used as convenient printable semiconducting layers and can lead to(More)
This review aims to provide an update on the development involving dielectric/organic semiconductor (OSC) interfaces for the realization of biofunctional organic field-effect transistors (OFETs). Specific focus is given on biointerfaces and recent technological approaches where biological materials serve as interlayers in back-gated OFETs for biosensing(More)
In this contribution, we propose a label-free immunosensor, based on a novel type of electrolyte-gated field-effect transistor (EGOFET), for ultrasensitive detection of the C-reactive protein (CRP). The recognition layer of the biosensor is fabricated by physical adsorption of the anti-CRP monoclonal antibody onto a poly-3-hexyl thiophene (P3HT) organic(More)
Electrical double layer (EDL) thin film transistors (TFTs) are an interesting class of transistors that use an electrolyte as the gating medium. Recently it has been demonstrated that pure organic solvents can also be used as gating media for TFTs without the addition of exogenous electrolytes. Here we present a systematic study of the performances of TFTs(More)