Kyriacos A. Mitrophanous

Learn More
Amyotrophic lateral sclerosis (ALS) causes adult-onset, progressive motor neuron degeneration in the brain and spinal cord, resulting in paralysis and death three to five years after onset in most patients. ALS is still incurable, in part because its complex aetiology remains insufficiently understood. Recent reports have indicated that reduced levels of(More)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting in the selective death of motor neurons in the brain and spinal cord. Some familial cases of ALS are caused by dominant mutations in the gene encoding superoxide dismutase (SOD1). The emergence of interfering RNA (RNAi) for specific gene silencing could be therapeutically(More)
Retinoic acid, acting through the nuclear retinoic acid receptor beta2 (RARbeta2), stimulates neurite outgrowth from peripheral nervous system tissue that has the capacity to regenerate neurites, namely, embryonic and adult dorsal root ganglia. Similarly, in central nervous system tissue that can regenerate, namely, embryonic mouse spinal cord, retinoic(More)
BACKGROUND Parkinson's disease is typically treated with oral dopamine replacement therapies; however, long-term treatment leads to motor complications and, occasionally, impulse control disorders caused by intermittent stimulation of dopamine receptors and off-target effects, respectively. We aimed to assess the safety, tolerability, and efficacy of(More)
The human immunodeficiency virus (HIV) genome is AU rich, and this imparts a codon bias that is quite different from the one used by human genes. The codon usage is particularly marked for the gag, pol, and env genes. Interestingly, the expression of these genes is dependent on the presence of the Rev/Rev-responsive element (RRE) regulatory system, even in(More)
The management of disorders of the nervous system remains a medical challenge. The key goals are to understand disease mechanisms, to validate therapeutic targets, and to develop new therapeutic strategies. Viral vector-mediated gene transfer can meet these goals and vectors based on lentiviruses have particularly useful features. Lentiviral vectors can(More)
In Parkinson's disease, degeneration of specific neurons in the midbrain can cause severe motor deficits, including tremors and the inability to initiate movement. The standard treatment is administration of pharmacological agents that transiently increase concentrations of brain dopamine and thereby discontinuously modulate neuronal activity in the(More)
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise(More)
Spinal muscular atrophy (SMA) is a frequent recessive autosomal disorder. It is caused by mutations or deletion of the telomeric copy of the survival motor neuron (SMN) gene, leading to depletion in SMN protein levels. The treatment rationale for SMA is to halt or delay the degeneration of motor neurons, but to date there are no effective drug treatments(More)
In this report it is demonstrated for the first time that rabies-G envelope of the rabies virus is sufficient to confer retrograde axonal transport to a heterologous virus/vector. After delivery of rabies-G pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat striatum, neurons in regions distal from but(More)