Kyousuke Kamada

Learn More
A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant(More)
OBJECT The aim of this study was better preoperative planning and direct application to intraoperative procedures through accurate coregistration of diffusion-tensor (DT) imaging-based tractography results and anatomical three-dimensional magnetic resonance images and subsequent importation of the combined images to a neuronavigation system (functional(More)
BACKGROUND In this study, we visualized the eloquent motor system including the somatosensory-motor cortex and corticospinal tract on a neuronavigation system, integrating magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and anisotropic diffusion-weighted MRI (ADWI). METHODS Four patients with brain lesions adjacent to the(More)
High gamma activity (HGA) has been shown to be positively correlated with blood oxygenation level-dependent (BOLD) responses in the primary cortices with simple tasks. It is, however, an open question whether the correlation is simply applied to the association areas related to higher cognitive functions. The aim of this study is to investigate quantitative(More)
OBJECTIVE It has been difficult to obtain anatomic and functional information about the visual pathway during neurosurgical operations. The aim of this study was to combine the information of the visual evoked potentials (VEPs) and the anatomic navigation of the optic radiation by diffusion tensor imaging-based tractography for functional monitoring of the(More)
OBJECTIVE It is known that functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) are sensitive to the frontal and temporal language function, respectively. Therefore, we established combined use of fMRI and MEG to make reliable identification of the global language dominance in pathological brain conditions. METHODS We investigated(More)
OBJECTIVE For quick and stable identification of the primary motor area (PMA), diffusion tensor imaging (DTI) data were acquired and corticospinal tractography was mathematically visualized. METHODS Data sets of DTI, anatomic magnetic resonance imaging, and functional magnetic resonance imaging with finger-tapping tasks were acquired during the same(More)
OBJECTIVE The determination of language lateralisation is important for patients with medically intractable epilepsy or a brain tumour near the language areas to avoid the risk of post-surgical language deficits. The aim of this study was to evaluate the clinical usefulness of near-infrared spectroscopy (NIRS) to identify language lateralisation compared(More)
OBJECT There is continuous interest in the monitoring of language function during tumor resection around the frontotemporal regions of the dominant hemisphere. The aim of this study was to visualize language-related subcortical connections, such as the arcuate fasciculus (AF) by diffusion tensor (DT) imaging-based tractography. METHODS Twenty-two patients(More)
The supplementary motor area (SMA) is a key structure involved in behavioral planning and execution. Although many reports have indicated that SMA is organized somatotopically, its exact organization remains still unclear. This study aimed to functionally map SMA using functional magnetic resonance imaging (fMRI) and validate the fMRI-SMA by electrocortical(More)