Learn More
Development of the vertebrate central nervous system is thought to be controlled by intricate cell-cell interactions and spatio-temporally regulated gene expressions. The details of these processes are still not fully understood. We have isolated a novel vertebrate gene, CRIM1/Crim1, in human and mouse. Human CRIM1 maps to chromosome 2p21 close to the(More)
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the(More)
BACKGROUND The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular(More)
The slit (sli) gene, encoding a secreted glycoprotein, has been demonstrated to play a vital role in axonal guidance in Drosophila melanogaster by acting as a signalling ligand for the robo receptor (Rothberg, J.M., Jacobs, J.R., Goodman, C.S., Artavanis-Tsakonas, S., 1990. slit: an extracellular protein necessary for development of midline glia and(More)
The development of the mammalian kidney is well conserved from mouse to man. Despite considerable temporal and spatial data on gene expression in mammalian kidney development, primarily in rodent species, there is a paucity of genes whose expression is absolutely specific to a given anatomical compartment and/or developmental stage, defined here as 'anchor'(More)
BACKGROUND The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic in situ screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the(More)
Here we describe the first detailed catalog of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra, and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using whole-mount in situ(More)
Members of the Sox gene family encode transcription factors that have diverse and important functions during development. We have recently described the cloning of chick and mouse Sox14 and the expression of these genes in a population of ventral interneurons in the embryonic spinal cord. We report here the cloning and sequencing of the human orthologue of(More)
Relative positions of neurons within mature murine pelvic ganglia based on expression of neurotransmitters have been described. However the spatial organization of developing innervation in the murine urogenital tract (UGT) and the gene networks that regulate specification and maturation of neurons within the pelvic ganglia of the lower urinary tract (LUT)(More)
  • 1