Learn More
Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation(More)
The concept of a fuel cell dates back to 1839, from independent studies by Grove and Schoenbein. Like a battery, a fuel cell is a device for obtaining electrical energy directly from a chemical reaction, but unlike a battery, electrical power is sustained as long as the reacting chemicals are supplied to each electrode with the cathode receiving oxidant and(More)
A molecular wire is used to connect two proteins through their physiologically relevant redox cofactors to facilitate direct electron transfer. Photosystem I (PS I) and an [FeFe]-hydrogenase (H(2)ase) serve as the test bed for this new technology. By tethering a photosensitizer with a hydrogen-evolving catalyst, attached by Fe-S coordination bonds between(More)
The cycling between active and inactive states of the catalytic center of [NiFe]-hydrogenase from Allochromatium vinosum has been investigated by dynamic electrochemical techniques. Adsorbed on a rotating disk pyrolytic graphite "edge" electrode, the enzyme is highly electroactive: this allows precise manipulations of the complex redox chemistry and(More)
Use of hydrogen in fuel cells requires catalysts that are tolerant to oxygen and are able to function in the presence of poisons such as carbon monoxide. Hydrogen-cycling catalysts are widespread in the bacterial world in the form of hydrogenases, enzymes with unusual active sites composed of iron, or nickel and iron, that are buried within the protein. We(More)
A new strategy is described for comparing, quantitatively, the ability of hydrogenases to tolerate exposure to O2 and anoxic oxidizing conditions. Using protein film voltammetry, the inherent sensitivities to these challenges (thermodynamic potentials and rates of reactions) have been measured for enzymes from a range of mesophilic microorganisms. In the(More)
Knallgas bacteria such as certain Ralstonia spp. are able to obtain metabolic energy by oxidizing trace levels of H2 using O2 as the terminal electron acceptor. The [NiFe] hydrogenases produced by these organisms are unusual in their ability to oxidize H2 in the presence of O2, which is a potent inactivator of most hydrogenases through attack at the active(More)
Hydrogenases provide an inspiration for future energy technologies. The active sites of these microbial enzymes contain Fe or Ni and Fe coordinated by CO and CN ligands: yet they have activities for hydrogen cycling that compare with Pt catalysts. Is there a future for enzymes in technological H2 cycling? There are obviously going to be disadvantages,(More)