Learn More
Climate warming over the next century is expected to have a large impact on the interactions between pathogens and their animal and human hosts. Vector-borne diseases are particularly sensitive to warming because temperature changes can alter vector development rates, shift their geographical distribution and alter transmission dynamics. For this reason,(More)
The savannahs of Asia remain locally unrecognized as distinctive ecosystems, and continue to be viewed as degraded forests or seasonally dry tropical forests. These colonial-era legacies are problematic, because they fail to recognize the unique diversity of Asian savannahs and the critical roles of fire and herbivory in maintaining ecosystem health and(More)
Savanna plant communities change considerably across time and space. The processes driving savanna plant species diversity, coexistence and turnover along environmental gradients are still unclear. Understanding how species respond differently to varying environmental conditions during the seedling stage, a critical stage for plant population dynamics, is(More)
BACKGROUND AND AIMS Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous(More)
Metabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China. A new primer(More)
Our understanding of the effects of tropical cyclones on species composition and dynamics of forest communities is mainly derived from studies that have considered single cyclonic events. Here we examined changes in the tree species and functional trait composition in an 8-ha Dipterocarp forest at Palanan in the northeastern Philippines that is subject to a(More)
Fragmentation influences the population dynamics and community composition of vertebrate animals. Fragmentation effects on rodent species in forests may in turn affect seed predation and dispersal of many plant species. Previous studies have usually addressed this question by monitoring a single species, and their results are contradictory. Very few studies(More)
(2016). Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest. Ecology 97: 215-224. (2016). Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging spectroscopy. (2016). Top-down versus bottom-up ecological control in cacao, Theobroma cacao L. Tropical Agriculture, in press. (2016).(More)
BACKGROUND AND AIMS Plant relative growth rate (RGR) depends on biomass allocation to leaves (leaf mass fraction, LMF), efficient construction of leaf surface area (specific leaf area, SLA) and biomass growth per unit leaf area (net assimilation rate, NAR). Functional groups of species may differ in any of these traits, potentially resulting in (1)(More)
Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled(More)