Kyle S. Martin

Learn More
Computational models have been increasingly used to study the tissue-level constitutive properties of muscle microstructure; however, these models were not created to study or incorporate the influence of disease-associated modifications in muscle. The purpose of this paper was to develop a novel multiscale muscle modelling framework to elucidate the(More)
Skeletal muscle is highly responsive to use. In particular, muscle atrophy attributable to decreased activity is a common problem among the elderly and injured/immobile. However, each muscle does not respond the same way. We developed an agent-based model that generates a tissue-level skeletal muscle response to disuse/immobilization. The model incorporates(More)
The murine spinotrapezius is a thin, superficial skeletal support muscle that extends from T3 to L4, and is easily accessible via dorsal skin incision. Its unique anatomy makes the spinotrapezius useful for investigation of ischemic injury and subsequent microvascular remodeling. Here, we demonstrate an arteriolar ligation model in the murine spinotrapezius(More)
Numerous studies have pharmacologically modulated the muscle milieu in the hopes of promoting muscle regeneration; however, the timing and duration of these interventions are difficult to determine. This study utilized a combination of in silico and in vivo experiments to investigate how inflammation manipulation improves muscle recovery following injury.(More)
agent-based modeling Integrating physiology across scales and formalizing hypothesis exploration with including high resolution figures, can be found at: Updated information and services those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a year (monthly) by the American publishes original papers that deal with diverse(More)
  • 1