Kyle E. Niemeyer

Learn More
The progress made in accelerating simulations of fluid flow using GPUs, and the challenges that remain, are surveyed. The review first provides an introduction to GPU computing and programming, and discusses various considerations for improved performance. Case studies comparing the performance of CPU- and GPU-based solvers for the Laplace and(More)
1 Introduction Modern science and engineering research depends on software. A 2009 survey of scientists found that 91% consider software important or very important to their research [Hannay et al., 2009]. The scientific community uses citation to acknowledge traditional research results published in archival journals and conferences, but no such accepted(More)
The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge–Kutta–Cash–Karp method, and the GPU-accelerated version performed(More)
Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in(More)
Software is data, but it is not just data. While " data " in computing and information science can refer to anything that can be processed by a computer, software is a special kind of data that can be a creative, executable tool that operates on data. However, software and data are similar in that they both traditionally have not been cited in publications.(More)
Simulations of physical phenomena are essential to the expedient design of precision components in aerospace and other high-tech industries. These phenomena are often described by mathematical models involving partial differential equations (PDEs) without exact solutions. Modern design problems require simulations with a level of resolution that is(More)
A fifth-order implicit Runge–Kutta method and two fourth-order exponential integration methods equipped with Krylov subspace approximations were implemented for the GPU and paired with the analytical chemical kinetic Jacobian software pyJac. The performance of each algorithm was evaluated by integrating thermochemical state data sampled from stochastic(More)
The task of integrating a large number of independent ODE systems arises in various scientific and engineering areas. For nonstiff systems, common explicit integration algorithms can be used on GPUs, where individual GPU threads concurrently integrate independent ODEs with different initial conditions or parameters. One example is the fifth-order adaptive(More)