Learn More
Crystalline nanoparticle arrays and superlattices with well-defined geometries can be synthesized by using appropriate electrostatic, hydrogen-bonding or biological recognition interactions. Although superlattices with many distinct geometries can be produced using these approaches, the library of achievable lattices could be increased by developing a(More)
The next step in the maturing field of nanotechnology is to develop ways to introduce unusual architectural changes to simple building blocks. For nanowires, on-wire lithography (OWL) has emerged as a powerful way of synthesizing a segmented structure and subsequently introducing architectural changes through post-chemical treatment. In the OWL protocol(More)
We report the synthesis of solution-dispersible, 35 nm diameter gold nanorod dimers with gaps as small as ∼2 nm for surface-enhanced Raman scattering (SERS). Using on-wire lithography (OWL), we prepared tailorable dimers in high yield and high monodispersity (∼96% dimers) that produce both large and reproducible SERS signals with enhancement factors of (6.8(More)
Ultrathin and flexible silica nanosheets, synthesized with gold nanorod dimers embedded uniformly throughout, can be dispersed in solution and deposited onto arbitrary surfaces. These novel materials conform and maintain the as-synthesized density of dimers, allowing them to be used reliably in labeling and detection applications.
We report the synthesis of solution dispersible, one-dimensional metal nanostructure arrays as small as 35 nm in diameter using on-wire lithography, wherein feature thickness and spacing in the arrays is tailorable down to approximately 6 and 1 nm, respectively. Using this unique level of control, we present solution-averaged extinction spectra of 35 nm(More)
The extinction spectra of Au nanorods electrochemically synthesized using anodic aluminum oxide templates are reported. Homogeneous suspensions of nanorods with average diameters of 35, 55, 80, and 100 nm and varying lengths were synthesized, and their resultant surface plasmon resonances were probed by experimental and theoretical methods. Experimental(More)
We report a novel method for synthesizing silver-based nanodisk code (NDC) structures using on-wire lithography, where we employ milder synthetic and etching conditions than those used to synthesize the analogous gold structures. The silver structures exhibit stronger surface-enhanced Raman scattering signals than their Au counterparts at 633 and 532 nm(More)
Using on-wire lithography to synthesize well-defined nanorod dimers and trimers, we report a systematic study of the plasmon coupling properties of such materials. By comparing the dimer/trimer structures to discrete nanorods of the same overall length, we demonstrate many similarities between antibonding coupled modes in the dimers/trimers and higher-order(More)