Learn More
Pathophysiology of the temporomandibular joint (TMJ) disc is central to many orofacial disorders; however, mechanical characterization of this tissue is incomplete. In this study, we identified surface-regional mechanical variations in the porcine TMJ disc under unconfined compression. The intermediate zone, posterior, anterior, lateral, and medial regions(More)
The potential impact of a tissue-engineered temporomandibular joint (TMJ) disc is immense. Currently, patients suffering from a severely dysfunctional TMJ have few options. Facing the general lack of safe, effective TMJ disc implants, many patients undergo discectomy, a procedure that removes the injured TMJ disc in hopes of reducing debilitating symptoms(More)
The temporomandibular joint (TMJ) disc is a central element in several TMJ disorders. Tissue-engineered TMJ disc replacements may alleviate discomfort associated with TMJ disorders; however, prior to developing a replacement, a thorough understanding of the native disc must be attained. Toward this end, we developed an unconfined compression, incremental(More)
The temporomandibular joint (TMJ) disc is maintained by a population of fibrochondrocytes. Although articular chondrocytes exhibit zonal differences and de-differentiate in monolayer culture, such variations are unknown for fibrochondrocytic populations. This study's objective was to define topographical cellular variations in the porcine TMJ disc and(More)
OBJECTIVES Previously, we demonstrated rapid changes in temporomandibular joint (TMJ) disk gene expression during monolayer expansion. This study's objective was to investigate the ability of pellet culture and growth factors to rescue TMJ disk gene expression changes. DESIGN Temporomandibular joint disk cells were isolated from mature porcine tissue and(More)
Interleukin-17 (IL-17) is a cytokine recently shown to be elevated, along with interferon-γ (IFNγ) and tumor necrosis factor (TNFα), in degenerated and herniated intervertebral disc (IVD) tissues, suggesting a role for these cytokines in intervertebral disc disease. The objective of our study was to investigate the involvement of IL-17 and costimulants IFNγ(More)
OBJECTIVE Implantation of synthetic temporomandibular joint (TMJ) disc replacements aimed to alleviate pain and restore functional losses caused by TMJ disorders. Unfortunately, these synthetic replacements have been largely unsuccessful and in some instances have incited severe immune responses. Tissue engineering, however, may provide viable TMJ disc(More)
Temporomandibular joint disc tissue-engineering studies commonly fail to produce significant matrix before construct contraction. We hypothesized that poly-L-lactic acid (PLLA) non-woven meshes would limit contraction, allow for comprehensive mechanical evaluation, and maintain viability relative to polyglycolic acid (PGA) non-woven mesh controls.(More)
OBJECTIVE Type IX collagen is an important component of the intervertebral disc extracellular matrix. Mutations in type IX collagen are associated with premature disc degeneration in mice and a predisposition to disc disorders in humans. The aim of this study was to assess the prevalence and timeline of intervertebral disc degeneration in mice homozygous(More)
STUDY DESIGN The authors investigated gait abnormalities and mechanical hypersensitivity associated with invertebral disc herniation in a rat model of radiculopathy. Further evaluation involved assessing how nucleus pulposus (NP) injury affected systemic cytokine expression and molecular changes at the dorsal root ganglion (DRG). OBJECTIVE The objective(More)