Learn More
During vertebrate development, neuronal survival depends on target-derived neurotrophic factors. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, can prevent the death of particular peripheral sensory neurons in vitro, and of central motor neurons as well as dopaminergic and cholinergic neurons of the basal forebrain during(More)
We have generated mice carrying a mutation of the gene encoding the low affinity NGF receptor p75NGFR by targeted mutation in embryonic stem cells. Mice homozygous for the mutation were viable and fertile. Immunohistochemical analyses of the footpad skin of mutant mice revealed markedly decreased sensory innervation by calcitonin gene-related peptide- and(More)
Neurotrophin-3-deficient (NT-3-deficient) mice were generated by gene targeting. Mutant mice displayed severe movement defects of the limbs, and most died shortly after birth. Substantial portions of peripheral sensory and sympathetic neurons were lost while motor neurons were not affected. Significantly, spinal proprioceptive afferents and their peripheral(More)
The role of the common low affinity neurotrophin receptor, p75, is controversial. Studies using cell lines suggest that p75 is either essential or dispensable for neurotrophin responsiveness. To resolve this issue, we studied the survival response of developing neurons obtained from normal mouse embryos and embryos with a null mutation in the p75 gene.(More)
To understand the role of low-affinity neurotrophin receptor p75 in neural development, we previously generated mice carrying a null mutation in the p75 locus (Lee, K. F., Li, E., Huber, L. J., Landis, S. C., Sharpe, A. H., Chao, M. V. and Jaenisch, R. (1992) Cell 69, 737-749). To elucidate the mechanisms leading to deficits in the peripheral nervous system(More)
The development of Schwann cells, the myelin-forming glial cells of the vertebrate peripheral nervous system, involves a neonatal phase of proliferation in which cells migrate along and segregate newly formed axons. Withdrawal from the cell cycle, around postnatal days 2-4 in rodents, initiates terminal differentiation to the myelinating state. During this(More)
Schwann cells express the low-affinity neurotrophin receptor (p75), but no role for either the neurotrophins or their cognate receptors in Schwann cell development has been established. We have found that Schwann cells isolated from postnatal day 1 (P1) or P2 mice that were p75-deficient exhibited potentiated survival compared to wild-type cells after(More)
Postnatal homozygous neurotrophin-3 mutant mice display a loss of about half the sympathetic superior cervical ganglion (SCG) neurons (Ernfors, P., Lee, K.-F., Kucera, J. and Jaenisch, R. (1994a) Cell 77, 503-512; Farinas, I., Jones, K. R., Backus, C., Wang, X. Y. and Reichardt, L. F. (1994) Nature 369, 658-661). We found that this loss is caused by(More)
During neuronal migration to the developing cerebral cortex, neurons regulate radial glial cell function and radial glial cells, in turn, support neuronal cell migration and differentiation. To study how migrating neurons and radial glial cells influence each others' function in the developing cerebral cortex, we examined the role of glial growth factor (a(More)
The low-affinity neurotrophin receptor p75 binds all neurotrophins with similar affinity. For elucidation of its function, mice bearing a null mutation in the p75 locus were generated. Examination of sympathetic innervation of target tissues revealed that pineal glands lacked innervation and sweat gland innervation was absent or reduced in particular(More)