Kwang Yong Shin

Learn More
When capturing an iris image under unconstrained conditions and without user cooperation, the image quality can be highly degraded by poor focus, off-angle view, motion blur, specular reflection (SR), and other artifacts. The noisy iris images increase the intra-individual variations, thus markedly degrading recognition accuracy. To overcome these problems,(More)
Age estimation has many useful applications, such as age-based face classification, finding lost children, surveillance monitoring, and face recognition invariant to age progression. Among many factors affecting age estimation accuracy, gender and facial expression can have negative effects. In our research, the effects of gender and facial expression on(More)
We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user's gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position(More)
With the development of intelligent surveillance systems, the need for accurate detection of pedestrians by cameras has increased. However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change, occlusion, and higher(More)
Because of the advantages of finger-vein recognition systems such as live detection and usage as bio-cryptography systems, they can be used to authenticate individual people. However, images of finger-vein patterns are typically unclear because of light scattering by the skin, optical blurring, and motion blurring, which can degrade the performance of(More)
The need for computer vision-based human detection has increased in fields, such as security, intelligent surveillance and monitoring systems. However, performance enhancement of human detection based on visible light cameras is limited, because of factors, such as nonuniform illumination, shadows and low external light in the evening and night.(More)
Conventional iris recognition requires a high-resolution camera equipped with a zoom lens and a near-infrared illuminator to observe iris patterns. Moreover, with a zoom lens, the viewing angle is small, restricting the user’s head movement. To address these limitations, periocular recognition has recently been studied as biometrics. Because the larger(More)