Learn More
This review gives a brief overview of microvalves, and focuses on the actuation mechanisms and their applications. One of the stumbling blocks for successful miniaturization and commercialization of fully integrated microfluidic systems was the development of reliable microvalves. Applications of the microvalves include flow regulation, on/off switching and(More)
This paper presents the development and characterization of an integrated microfluidic biochemical detection system for fast and low-volume immunoassays using magnetic beads, which are used as both immobilization surfaces and bio-molecule carriers. Microfluidic components have been developed and integrated to construct a microfluidic biochemical detection(More)
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage,(More)
This paper proposes a microfluidic device for the on-chip differentiation of an embryoid body (EB) formed in a microwell via 3-dimensional cultures of mouse embryonic carcinoma (EC) cells. The device adjusted the size of the EB by fluid volume, differentiated the EB by chemical treatment, and evaluated its effects in EC cells by on-chip immunostaining. A(More)
We present a microfluidic device generating three-dimensional (3D) coaxial flow by the addition of a simple hillock to produce an alginate core-shell microcapsule for the efficient formation of a cell spheroid. A hillock tapered at downstream of the two-dimensional focusing channel enables outside flow to enclose the core flow. The aqueous solution in the(More)
Here we report the development of a programmable and fully automatic gold array-embedded gradient microfluidic chip that integrates a gradient microfluidic device with gold-patterned microarray wells. This device provides a convenient and reproducible surface-enhanced Raman scattering (SERS)-based immunoassay platform for cancer biomarkers. We used hollow(More)
We present a simple method of water-in-oil droplet synchronization in a railroad-like channel network. The network consisted of a top channel, a bottom channel, and ladder-like channels interconnected between the two main channels. The presence of the pressure difference between the top and bottom channels resulted in the crossflow of carrier oil through(More)
In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The(More)
This study reports a droplet-based microfluidic device for on-demand electrostatic droplet charging and sorting. This device combines two independent modules: one is a hydrodynamic flow focusing structure to generate water-in-oil droplets, and the other is the two paired-electrodes for charging and sorting of the droplets. Depending on the polarity on(More)
We present a simple method of guiding, distributing, and storing of a train of shape-dependent droplets by using side flows, cavity guiding tracks, and storage chambers. The squeezing flow makes a train of flattened droplets to align to one side of the wall and the pushing flow guides it to one of the designated guiding tracks. Then the guided droplets move(More)