Learn More
Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a recently identified oncogene localized at 1q21, a frequently amplified region in hepatocellular carcinoma (HCC). To explore its oncogenic mechanisms, we set out to identify CHD1L-regulated genes using a chromatin immunoprecipitation-based (ChIP-based) cloning strategy in a human HCC(More)
UNLABELLED Identification of therapeutic targets against tumor-initiating cells (TICs) is a priority in the development of new therapeutic paradigms against cancer. We enriched a TIC population capable of tumor initiation and self-renewal by serial passages of hepatospheres with chemotherapeutic agents. In chemoresistant hepatospheres, CD47 was found to be(More)
Esophageal squamous cell carcinoma (ESCC), the major histologic subtype of esophageal cancer, is a devastating disease characterized by distinctly high incidences and mortality rates. However, there remains limited understanding of molecular events leading to development and progression of the disease, which are of paramount importance to defining(More)
Recent efforts in our study of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) have led to the identification of CD133 as a prominent HCC CSC marker. Findings were based on experiments done on cell lines and xenograft tumors where expression of CD133 was detected at levels as high as 65%. Based on the CSC theory, CSCs are believed to represent(More)
UNLABELLED Liver tumor-initiating cells (T-ICs) are capable of self-renewal and tumor initiation and are more chemoresistant to chemotherapeutic drugs. The current therapeutic strategies for targeting stem cell self-renewal pathways therefore represent rational approaches for cancer prevention and treatment. In the present study, we found that(More)
A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor, called tumor-initiating cells (TICs) or cancer stem cells (CSCs). Here we describe the identification and characterization of such cells from hepatocellular carcinoma (HCC) using the marker CD133. CD133 accounts for approximately 1.3%-13.6% of the(More)
Tumor-initiating cells (T-ICs) are a subpopulation of chemoresistant tumor cells that have been shown to cause tumor recurrence upon chemotherapy. Identification of T-ICs and their related pathways are therefore priorities for the development of new therapeutic paradigms. We established chemoresistant hepatocellular carcinoma (HCC) xenograft tumors in(More)
Expression of microRNA genes is profoundly altered in cancer but their role in the development of androgen-independent prostate cancer has received limited attention as yet. In this study, we report a functional impact in prostate cancer cells for overexpression of the microRNA miR-616, which occurred consistently in cells that were androgen-independent(More)
UNLABELLED A novel theory in the field of tumor biology postulates that cancer growth is driven by a population of stem-like cells, called tumor-initiating cells (TICs). We previously identified a TIC population derived from hepatocellular carcinoma (HCC) that is characterized by membrane expression of CD133. Here, we describe a novel mechanism by which(More)
Tumor-initiating cells (TIC), also known as cancer stem cells, are regarded widely as a specific subpopulation of cells needed for cancer initiation and progression. TICs have yet to be identified in esophageal tumors that have an increasing incidence in developed countries. Here, we report a CD90(+) cell population found in esophageal squamous cell(More)