Kurumi Yamamoto

Learn More
Of the five basic taste qualities, the molecular mechanisms underlying sweet, bitter, and umami (savory) taste perception have been extensively elucidated, including the taste receptors and downstream signal transduction molecules. Recent studies have revealed that these taste-related molecules play important roles not only in the oral cavity but also in a(More)
The polycystic kidney disease 1-like 3 (PKD1L3) and polycystic kidney disease 2-like 1 (PKD2L1) proteins have been proposed to form heteromers that function as sour taste receptors in mammals. Here, we show that PKD1L3 and PKD2L1 interact through their transmembrane domains, and not through the coiled-coil domain, by coimmunoprecipitation experiments using(More)
Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate (CvP) and foliate papillae (FoP) located in the posterior region of the tongue, although not in fungiform papillae (FuP) or the palate. To visualize the gustatory neural pathways(More)
The connections between taste receptor cells (TRCs) and innervating gustatory neurons are formed in a mutually dependent manner during development. To investigate whether a change in the ratio of cell types that compose taste buds influences the number of innervating gustatory neurons, we analyzed the proportion of gustatory neurons that transmit sour taste(More)
Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial(More)
  • 1