Kurtis D. Cantley

Learn More
Properties of neural circuits are demonstrated via SPICE simulations and their applications are discussed. The neuron and synapse subcircuits include ambipolar nano-crystalline silicon transistor and memristor device models based on measured data. Neuron circuit characteristics and the Hebbian synaptic learning rule are shown to be similar to biology.(More)
Spiking neuron circuits consisting of ambipolar nanocrystalline-silicon (nc-Si) thin-film transistors (TFTs) have been fabricated using low temperature processing conditions (maximum of 250 <sup>&#x00B0;</sup>C) that allow the use of flexible substrates. These circuits display behaviors commonly observed in biological neurons such as millisecond spike(More)
Spiking neural circuits have been designed in which the memristive synapses exhibit spike timing-dependent plasticity (STDP). STDP is a learning mechanism where synaptic weight (the strength of the connection between two neurons) depends on the timing of pre-and post-synaptic action potentials. A known capability of networks with STDP is detection of(More)
This study demonstrates the growth and differentiation of C2C12 myoblasts into functional myotubes on 3-dimensional graphene foam bioscaffolds. Specifically, we establish both bare and laminin coated graphene foam as a biocompatible platform for muscle cells and identify that electrical coupling stimulates cell activity. Cell differentiation and(More)
  • 1