Learn More
The high diversity of cytoskeletal actin structures is accomplished by myriads of actin binding proteins (ABPs). Depending on its concentration, even a single type of ABP can induce different actin microstructures. Thus, for an overall understanding of the cytoskeleton, a detailed characterization of the cross-linker's effect on structural and mechanical(More)
The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire-actin complexes in solution assume a unique, longitudinal-like shape, in which(More)
Cell size fundamentally affects all biosynthetic processes by determining the scale of organelles and influencing surface transport. Although extensive studies have identified many mutations affecting cell size, the molecular mechanisms underlying size control have remained elusive. In the budding yeast Saccharomyces cerevisiae, size control occurs in G1(More)
Migrating cells nucleate focal adhesions (FAs) at the cell front and disassemble them at the rear to allow cell translocation. FAs are made of a multiprotein complex, the adhesome, which connects integrins to stress fibers made of mixed-polarity actin filaments [1-5]. Myosin II-driven contraction of stress fibers generates tensile forces that promote(More)
Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they(More)
While cells make use of many actin binding proteins (ABPs) simultaneously to tailor the mechanical properties of the cytoskeleton, the detailed interplay of different ABPs is not understood. By a combination of macrorheological measurements and confocal microscopy, we show that the ABPs fascin and filamin modify the structural and viscoelastic properties of(More)
Although the structure of cross-linking molecules mainly determines the structural organization of actin filaments and with that the static elastic properties of the cytoskeleton, it is largely unknown how the biochemical characteristics of transiently cross-linking proteins (actin-binding proteins (ABPs)) affect the viscoelasticity of actin networks. In(More)
The mechanical properties of a cell are defined mainly by the cytoskeleton. One contributor within this three-dimensional structure is the actin cortex which is located underneath the lipid bilayer. It forms a nearly isotropic and densely cross-linked protein network. We present a continuum mechanical formulation for describing the mechanical properties of(More)
The ability to control the assembly and disassembly dynamics of actin filaments is an essential property of the cellular cytoskeleton. While many different proteins are known which accelerate the polymerization of monomers into filaments or promote their disintegration, much less is known on mechanisms which guarantee the kinetic stability of the(More)
The local interaction of F-actin with myosin-II motor filaments and crosslinking proteins is crucial for the force generation, dynamics, and reorganization of the intracellular cytoskeleton. By using a bottom-up approach, we are able to show that the contractility of reconstituted active actin systems is tightly controlled by the local pH. The pH-dependent(More)