Learn More
The superfamily of G-protein-coupled receptors (GPCRs) could be subclassified into 7 families (A, B, large N-terminal family B-7 transmembrane helix, C, Frizzled/Smoothened, taste 2, and vomeronasal 1 receptors) among mammalian species. Cloning and functional studies of GPCRs have revealed that the superfamily of GPCRs comprises receptors for chemically(More)
The Phox and Bem1p (PB1) domain constitutes a recently recognized protein-protein interaction domain found in the atypical protein kinase C (aPKC) isoenzymes, lambda/iota- and zeta PKC; members of mitogen-activated protein kinase (MAPK) modules like MEK5, MEKK2, and MEKK3; and in several scaffold proteins involved in cellular signaling. Among the last(More)
5-Hydroxytryptamine 2A (5-HT2A) receptors are essential for the actions of serotonin (5-hydroxytryptamine (5-HT)) on physiological processes as diverse as vascular smooth muscle contraction, platelet aggregation, perception, and emotion. In this study, we investigated the molecular mechanism(s) by which 5-HT activates 5-HT2A receptors using a combination of(More)
The serotonin (5-HT) transporter (SERT) plays an important role in the termination of 5-HT-mediated neurotransmission by transporting 5-HT away from the synaptic cleft and into the presynaptic neuron. In addition, SERT is the main target for antidepressant drugs, including the selective serotonin reuptake inhibitors (SSRIs). The three-dimensional (3D)(More)
Examination of polymorphisms in the Plasmodium falciparum gene for falcipain 2 revealed that this gene is one of two paralogs separated by 10.8 kb in chromosome 11. We designate the annotated gene denoted chr11.gen_424 as encoding falcipain 2A and the annotated gene denoted chr11.gen_427 as encoding falcipain 2B. The paralogs are 96% identical at the(More)
The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) plays an essential role in the termination of serotonergic neurotransmission by removing 5-HT from the synaptic cleft into the presynaptic neuron. It is also of pharmacological importance being targeted by antidepressants and psychostimulant drugs. Here, five commercial databases containing(More)
A database system and computer programs for storage and retrieval of information about guanine nucleotide-binding protein (G protein) -coupled receptor mutants and associated biological effects have been developed. Mutation data on the receptors were collected from the literature and a database of mutants and effects of mutations was developed. The G(More)
Molecular modeling techniques were used to build a three-dimensional model of the rat 5-HT2C receptor, which was used to examine receptor interactions for protonated forms of serotonin, ketanserin and ritanserin. Molecular dynamics simulations which were started with the fluoro benzene moiety of ketanserin and ritanserin oriented towards the cytoplasmic(More)
5-hydroxytryptamine (5-HT; serotonin) is a neurotransmitter essential for a large number of physiological processes including the regulation of vascular and non-vascular smooth muscle contraction, modulation of platelet aggregation, and the regulation of appetite, mood, anxiety, wakefulness and perception. To mediate this astonishing array of functions, no(More)
The complete sequence determination of the human genome marks the start of a new era in biological science, with focus shifting from sequencing to functional mechanisms of gene products. In addition to effects on gene expression, most of the currently used therapeutic drugs either have enzymes or membrane proteins as their molecular targets of action. These(More)