Learn More
The Cenozoic collision between the Indian and Asian continents formed the Tibetan plateau, beginning about 70 million years ago. Since this time, at least 1,400 km of convergence has been accommodated by a combination of underthrusting of Indian and Asian lithosphere, crustal shortening, horizontal extrusion and lithospheric delamination. Rocks exposed in(More)
Magnetotelluric exploration has shown that the middle and lower crust is anomalously conductive across most of the north-to-south width of the Tibetan plateau. The integrated conductivity (conductance) of the Tibetan crust ranges from 3000 to greater than 20,000 siemens. In contrast, stable continental regions typically exhibit conductances from 20 to 1000(More)
[1] Magnetotelluric data from a 150-km-long profile crossing the Banggong-Nujiang suture (BNS), central Tibet, acquired as part of the International Deep Profiling of Tibet and the Himalaya (INDEPTH) project, have been examined for crustal and upper mantle structure. Strike and dimensionality analyses demonstrate that regional-scale electrical structures(More)
  • 1