Kurt Busch

Learn More
We demonstrate that when an optically birefringent nematic liquid crystal is infiltrated into the void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material exhibits a completely tunable PBG. In particular, the three-dimensional PBG can be completely opened or closed by applying an electric field which rotates the(More)
We analyze the resonant linear and nonlinear transmission through a photonic crystal waveguide side-coupled to a Kerr-nonlinear photonic crystal resonator. First, we extend the standard coupled-mode theory analysis to photonic crystal structures and obtain explicit analytical expressions for the bistability thresholds and transmission coefficients which(More)
In this paper, we introduce a novel approach for optical sensing based on the excitation of critically localized modes in two-dimensional deterministic aperiodic structures generated by a Rudin-Shapiro (RS) sequence. Based on a rigorous computational analysis, we demonstrate that RS photonic structures provide a large number of resonant modes better suited(More)
  • Dirk Englund, Jelena Vučkovi´c, M S G I Johnson, M Povinelli, A Soljacic, S Karalis +32 others
  • 2006
We present a method for directly analyzing photonic nano-devices and apply it to photonic crystal cavities. Two-dimensional photonic crystals are scanned and reproduced in computer memory for Finite Difference Time Domain simuations. The results closely match experimental observations, with a fidelity far beyond that for idealized structures. This analysis(More)
We present a formalism for the description of fluorescence from optically active materials embedded in a photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local density of photon modes available to(More)