Learn More
We analyze the resonant linear and nonlinear transmission through a photonic crystal waveguide side-coupled to a Kerr-nonlinear photonic crystal resonator. First, we extend the standard coupled-mode theory analysis to photonic crystal structures and obtain explicit analytical expressions for the bistability thresholds and transmission coefficients which(More)
We present a detailed analysis of the dynamics of photon transport in waveguiding systems in the presence of a two-level system. In these systems, quantum interference effects generate a strong effective optical nonlinearity on the few-photon level. We clarify the relevant physical mechanisms through an appropriate quantum many-body approach. Based on this,(More)
We present an improvement of the standard Fourier Modal Method (FMM) for the analysis of lamellar gratings that is based on the use of automatically generated adaptive coordinates for arbitrarily shaped material profiles in the lateral plane of periodicity. This allows for an accurate resolution of small geometric features and/or large material contrasts(More)
We present a formalism for the description of fluorescence from optically active materials embedded in a photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local density of photon modes available to(More)
The past decade has witnessed intensive research efforts related to the design and fabrication of photonic crystals. These periodically structured dielectric materials can represent the optical analogue of semiconductor crystals, and provide a novel platform for the realization of integrated photonics. Despite intensive efforts, inexpensive fabrication(More)
We demonstrate that when an optically birefringent nematic liquid crystal is infiltrated into the void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material exhibits a completely tunable PBG. In particular, the three-dimensional PBG can be completely opened or closed by applying an electric field which rotates the(More)