Learn More
Net-like structures surrounding several types of neurones contain glycoconjugates which are detectable by lectins specific for N-acetylgalactosamine. Wisteria floribunda agglutinin (WFA) was introduced as a further marker for the visualization of such perineuronal nets, which were also revealed in regions of the rat brain where these structures could not be(More)
The nature and function of previously described perineuronal nets are still obscure. In the present study their polyanionic components were demonstrated in the rat brain using colloidal iron hydroxide (CIH) staining. In subcortical regions, such as the red nucleus, cerebellar, and vestibular nuclei, most neurons were ensheathed by CIH-binding material. In(More)
Perineuronal nets (PNs) are known as chondroitin sulphate-rich, lattice-like coatings of the extracellular matrix. In the cortex of mammalian species investigated so far, they were mainly found around GABAergic neurons, but to a lesser degree also around pyramidal cells. Previous investigations in the rat revealed similar distribution patterns of(More)
Perineuronal nets represent highly specialized glial and glia-associated structures. In this study, a triple fluorescence labeling of chondroitin sulfate proteoglycan-immunoreactive (CSPG-ir) and N-acetylgalactosamine (GalNac)-specific plant lectin Wisteria floribunda agglutinin (WFA) binding net components as well as parvalbumin-immunoreactivity (-ir) was(More)
Lattice-like perineuronal accumulations of extracellular-matrix proteoglycans have been shown to develop during postnatal maturation and to persist throughout life as perineuronal nets (PNs) in many brain regions. However, the dynamics of their reorganization in adults are as yet unknown. The aim of the present study was to examine the capability of PNs for(More)
In the human brain, the distribution of perineuronal nets occurring as lattice-like neuronal coatings of extracellular matrix proteoglycans ensheathing several types of non-pyramidal neurons and subpopulations of pyramidal cells in the cerebral cortex is largely unknown. Since proteoglycans are presumably involved in the pathogenesis of Alzheimer's disease,(More)
Cortical areas in rodents have been basically characterized by its cytoarchitecture, connectivity or by physiological parameters. In this study we show that they are revealed by distribution patterns of proteoglycans and parvalbumin-immunoreactivity. Brains of young adult Mongolian gerbils (Meriones unguiculatus) and Wistar rats were cut into series of(More)
The extracellular matrix is involved in various morphogenetic processes which are accompanied by changes in its physicochemical properties and spatial organization. In the adult brain it contributes to cellular communication and the regulation of neuronal activity. The present study deals with the postnatal appearance and transformation into adult(More)
Net-like structures, visualized with the Golgi technique and several histochemical and immunocytochemical methods, have been described to ensheath somata, parts of dendrites and axon initial segments of various types of neurons. The origin and function of these perineuronal nets have been controversially discussed. Recently, it was confirmed that they are(More)
Nissl, Golgi and fibre preparations were made of the cerebral cortex of the lateral gyrus of the bottlenose dolphin (Tursiops truncatus) in the region where visual evoked potentials have been reported (Sokolov et al., '72; Ladygina et al., '78). In the adult the visual cortex is relatively thin (average about 1,300 micron) for so large a brain (fixed brain(More)