Kurt A. Kaczmarek

Learn More
Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used, or with the information processed in some useful way. We review the methods used to present visual, auditory, and modified tactile information to the skin. First, we discuss present and(More)
Form perception with the tongue was studied with a 49-point electrotactile array. Five sighted adult human subjects (3M/2F) each received 4 blocks of 12 tactile patterns, approximations of circles, squares, and vertex-up equilateral triangles, sized to 4x4, 5x5, 6x6, and 7x7 electrode arrays. Perception with electrical stimulation of the tongue is better(More)
We see with the brain, not the eyes (Bach-y-Rita, 1972); images that pass through our pupils go no further than the retina. From there image information travels to the rest of the brain by means of coded pulse trains, and the brain, being highly plastic, can learn to interpret them in visual terms. Perceptual levels of the brain interpret the spatially(More)
Electrovibration is the tactile sensation of an alternating potential between the human body and a smooth conducing surface when the skin slides over the surface and where the current is too small to stimulate sensory nerves directly. It has been proposed as a high-density tactile display method, for example to display pictographic information to persons(More)
A new method to measure the dynamic range of electrotactile (electrocutaneous) stimulation uses both steepest ascent (gradient) and one-variable-at-a-time methods to determine the waveform variables that maximize the subjective magnitude (intensity) of the electrotactile percept at the maximal current without discomfort for balanced-biphasic pulse bursts(More)
High-resolution functional magnetic resonance imaging (fMRI) can be used to precisely identify blood oxygen level dependent (BOLD) activation of small structures within the brainstem not accessible with standard fMRI. A previous study identified a region within the pons exhibiting sustained neuromodulation due to electrical tongue stimulation, but was(More)
This pilot study aimed to show that information-free stimulation of the tongue can improve behavioral measures and induce sustained neuromodulation of the balance-processing network in individuals with balance dysfunction. Twelve balance-impaired subjects received one week of cranial nerve non-invasive neuromodulation (CN-NINM). Before and after the week of(More)
A comparison of auditory and visual perception of scatterplots showed similar correlation estimation performance in both modalities. The present study replicated this experiment using electrotactile (electrocutaneous) presentation of scatterplots on the fingertips and abdomen, as well as visual presentation. The correlation estimation task resulted in a(More)