Learn More
Haptic feedback plays an important role to further enhance the level of realism of virtual environments. However, rendering of realistic haptic feedback depends on its coupling to the underlying physics engine that governs the behavior of virtual objects. This paper presents methods to streamline the generation of haptic feedback with physics engine based(More)
This paper presents the development of a low-cost cataract surgery simulator for trainees to practise phacoemulsification procedures with computer-generated models in virtual environments. It focuses on the training of cornea incision, capsulorrhexis and phaco-sculpting, which are simulated interactively with computationally efficient algorithms developed(More)
Physically based models and simulation are usually computationally intensive and not suitable for real-time interactive virtual reality applications including on-line medical training and surgical simulation. In this paper, we propose and develop a web-based scalable deformable model by simulating deformation of soft tissues as a successive force(More)
Automatic heartbeat classification is an important technique to assist doctors to identify ectopic heartbeats in long-term Holter recording. In this paper, we introduce a novel disease-specific feature selection method which consists of a one-versus-one (OvO) features ranking stage and a feature search stage wrapped in the same OvO-rule support vector(More)
PURPOSE To motivate children with intellectual disabilities (ID) to learn handwashing and improve their performance by using computer-assisted teaching method. METHOD A teaching program was implemented using a computerized teaching station with faucet, soap dispenser and towel dispenser as user interface. In response to the children's actions, animations(More)
An effective deformable model based on a successive force propagation process is proposed. It avoids the laborious stiffness matrix formulation and is scalable simply by controlling the penetration depth. Mechanical tests are performed to evaluate its feasibility for modeling real tissues. An interactive system is developed using a commercial haptic device.
Classical fuzzy system modeling methods consider only the current scene where the training data are assumed to be fully collectable. However, if the data available from the current scene are insufficient, the fuzzy systems trained by using the incomplete datasets will suffer from weak generalization capability for the prediction in the scene. In order to(More)