Learn More
Support Vector Machine (SVM), which is one kind of learning machines, was applied to predict the subcellular location of proteins from their amino acid composition. In this research, the proteins are classified into the following 12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracall, (6) Golgi apparatus, (7)(More)
Support Vector Machines (SVMs) which is one kind of learning machines, was applied to predict the specificity of GalNAc-transferase. The examination for the self-consistency and the jackknife test of the SVMs method were tested for the training dataset (305 oligopeptides), the correct rate of self-consistency and jackknife test reaches 100% and 84.9%,(More)
The discriminant function algorithm was introduced to predict the subcellular location of proteins in prokaryotic organisms from their amino-acid composition. The rate of correct prediction for the three possible subcellular locations of prokaryotic proteins studied by Reinhardt and Hubbard (Nucleic Acid Research, 1998, 26:2230-2236) was 90% by the(More)
Can the coupling effect among different amino acid components be used to improve the prediction of protein structural classes? The answer is yes according to the study by Chou and Zhang (Crit. Rev. Biochem. Mol. Biol. 30:275-349, 1995), but a completely opposite conclusion was drawn by Eisenhaber et al. when using a different dataset constructed by(More)