Learn More
The cellular attributes of a protein, such as which compartment of a cell it belongs to and how it is associated with the lipid bilayer of an organelle, are closely correlated with its biological functions. The success of human genome project and the rapid increase in the number of protein sequences entering into data bank have stimulated a challenging(More)
Membrane proteins are classified according to two different schemes. In scheme 1, they are discriminated among the following five types: (1) type I single-pass transmembrane, (2) type II single-pass transmembrane, (3) multipass transmembrane, (4) lipid chain-anchored membrane, and (5) GPI-anchored membrane proteins. In scheme 2, they are discriminated among(More)
Given an uncharacterized protein sequence, how can we identify whether it is a membrane protein or not? If it is, which membrane protein type it belongs to? These questions are important because they are closely relevant to the biological function of the query protein and to its interaction process with other molecules in a biological system. Particularly,(More)
With the accomplishment of human genome sequencing, the number of sequence-known proteins has increased explosively. In contrast, the pace is much slower in determining their biological attributes. As a consequence, the gap between sequence-known proteins and attribute-known proteins has become increasingly large. The unbalanced situation, which has(More)
Given a nascent protein sequence, how can one predict its signal peptide or "Zipcode" sequence? This is a first important problem for scientists to use signal peptides as a vehicle to find new drugs or to reprogram cells for gene therapy. Based on a model that takes into account the coupling effect among some key subsites, the so-called [-3, -1, +1](More)
MOTIVATION With protein sequences entering into databanks at an explosive pace, the early determination of the family or subfamily class for a newly found enzyme molecule becomes important because this is directly related to the detailed information about which specific target it acts on, as well as to its catalytic process and biological function.(More)
The development of prediction methods based on statistical theory generally consists of two parts: one is focused on the exploration of new algorithms, and the other on the improvement of a training database. The current study is devoted to improving the prediction of protein structural classes from both of the two aspects. To explore a new algorithm, a(More)
One of the fundamental goals in proteomics and cell biology is to identify the functions of proteins in various cellular organelles and pathways. Information of subcellular locations of proteins can provide useful insights for revealing their functions and understanding how they interact with each other in cellular network systems. Most of the existing(More)
MOTIVATION Prediction of protein folding patterns is one level deeper than that of protein structural classes, and hence is much more complicated and difficult. To deal with such a challenging problem, the ensemble classifier was introduced. It was formed by a set of basic classifiers, with each trained in different parameter systems, such as predicted(More)