Learn More
In situations where humanoid robots with constrained posture walk through a narrow space (e.g. manufacturing plants and kitchens), shuffling motions that are stepless and possess wide foot supporting area are effective. One of the difficulties of humanoid's shuffle translations is the load distribution between both feet. If sole loads are not distributed(More)
The current study focused on the tea plant (Camellia sinensis) as a target for artificial cultivation because of the variation in its components in response to light conditions. We analyzed its sensory quality by multi-marker profiling using multicomponent data based on metabolomics to optimize the conditions of light and the environment during cultivation.(More)
In this paper, we propose a real-time control method for skating motion of humanoid robots. There are three problems for skating motion: (1) keeping dynamic balance, (2) adequately controlling foot force to suppress slipping at the foot, (3) controlling full-body motion in real-time. For solving these problems, we propose the Skating Motion Generator and(More)
In this paper, we develop a waterproof suit for humanoid robots and propose an underwater walking control method. Although very few life-sized humanoid robots are completely waterproof, we can easily make these humanoid robots watertight by putting a waterproof suit on them. In water, humanoid robots are influenced by the two forces due to the water:(More)