Kunihiko Ichishima

Learn More
BACKGROUND AND PURPOSE Volume-regulated anion channels (VRACs) play an important role in cell-volume regulation. alpha(1)-Adrenoceptor stimulation by phenylephrine (PE) suppressed the hypotonic activation of VRAC current in mouse ventricular cells and regulatory volume decrease (RVD) was also absent in PE-treated cells. We examined whether the effects of(More)
The intracellular signaling pathways responsible for extracellualr uridine-5'-triphosphate (UTPo)-induced chloride (Cl-) currents (I(Cl.UTP)) were studied in mouse ventricular myocytes with the whole-cell clamp technique. UTPo (0.1 to 100 microM) activated a whole-cell current that showed a time-independent activation, a linear current-voltage relationship(More)
Volume-regulated outwardly rectifying anion channel (VRAC) plays an important role in cell-volume regulation in many types of cells. Little is known about the regulation of VRAC by phosphatidylinositides (PIs), which include phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2). We examined the effect of PIs on the(More)
BACKGROUND It has been reported that elevated levels of serum uric acid are related to hypertension and cardiovascular disease. Recent studies, however, have found little association between hyperuricemia and hypertension. METHODS AND RESULTS The association of serum uric acid with blood pressure was examined in 3,960 Japanese male workers (18-64 years of(More)
The currents through the volume-regulated outwardly rectifying anion channel (VRAC) were measured in single ventricular myocytes obtained from streptozotocin (STZ)-induced diabetic mice, using whole-cell voltage-clamp method. In myocytes from STZ-diabetic mice, the density of VRAC current induced by hypotonic perfusion was markedly reduced, compared with(More)
Sympathetic nerves regulate vascular tone by releasing neurotransmitters into the vasculature. We previously demonstrated that bradykinin facilitates sympathetic neurotransmission in rat mesenteric arteries. Although little is known about the intracellular mechanism modulating this neurotransmission, recent cell line experiments have shown that the KCNQ(More)
  • 1