Learn More
The Sir3 protein helps form telomeric heterochromatin by interacting with hypoacetylated histone H4 lysine 16 (H4–Lys16). The molecular nature of the heterochromatin boundary is still unknown. Here we show that the MYST-like acetyltransferase Sas2p is required for the acetylation (Ac) of H4–Lys16 in euchromatin. In a sas2Δ strain or a phenocopy Lys16Arg(More)
Yeast core telomeric heterochromatin can silence adjacent genes and requires RAP1, SIR2, SIR3, and SIR4 and histones H3 and H4 for this telomere position effect. SIR3 overproduction can extend the silenced domain. We examine here the nature of these multiprotein complexes. SIR2 and SIR4 were immunoprecipitated from whole-cell extracts. In addition, using(More)
In Saccharomyces cerevisiae, heterochromatin-like regions are found near telomeres and at the silent mating-type loci, where they can repress genes in an epigenetic manner. Several proteins are involved in telomeric heterochromatin structure including Rap1, Sir2, Sir3, Sir4, yKu70 (Hdf1), yKu80 (Hdf2), and the N termini of histones H3 and H4. By recognizing(More)
  • 1