Learn More
Genome-wide scanning for signals of recent positive selection is essential for a comprehensive and systematic understanding of human adaptation. Here, we present a genomic survey of recent local selective sweeps, especially aimed at those nearly or recently completed. A novel approach was developed for such signals, based on contrasting the extended(More)
Skin pigmentation is a human phenotype that varies greatly among human populations and it has long been speculated that this variation is adaptive. We therefore expect the genes that contribute to these large differences in phenotype to show large allele frequency differences among populations and to possibly harbor signatures of positive selection. To(More)
BACKGROUND Genome-wide scans of hundreds of thousands of single-nucleotide polymorphisms (SNPs) have resulted in the identification of new susceptibility variants to common diseases and are providing new insights into the genetic structure and relationships of human populations. Moreover, genome-wide data can be used to search for signals of recent positive(More)
The MDR1 multidrug transporter plays a key role in determining drug bioavailability, and differences in drug response exist amongst different ethnic groups. Numerous studies have identified an association between the MDR1 single nucleotide polymorphism (SNP) exon 26 3435C>T and differences in MDR1 function. We performed a haplotype analysis of the MDR1 gene(More)
The human salivary microbiome may play a role in diseases of the oral cavity and interact with microbiomes from other parts of the human body (in particular, the intestinal tract), but little is known about normal variation in the salivary microbiome. We analyzed 14,115 partial ( approximately 500 bp) 16S ribosomal RNA (rRNA) sequences from saliva samples(More)
An adaptive variant of the human Ectodysplasin receptor, EDARV370A, is one of the strongest candidates of recent positive selection from genome-wide scans. We have modeled EDAR370A in mice and characterized its phenotype and evolutionary origins in humans. Our computational analysis suggests the allele arose in central China approximately 30,000 years ago.(More)
General parameters of selection, such as the frequency and strength of positive selection in natural populations or the role of introgression, are still insufficiently understood. The house mouse (Mus musculus) is a particularly well-suited model system to approach such questions, since it has a defined history of splits into subspecies and populations and(More)
Metagenomic studies traditionally rely on cloning polymerase chain reaction (PCR) products and sequencing multiple clones. However, this approach is tedious and expensive, thereby limiting the range and scale of questions that can be addressed. Recent developments in DNA sequencing technologies enable a dramatic increase in throughput via parallel in-depth(More)
The primary aim of genetic association and linkage studies is to identify genetic variants that contribute to phenotypic variation within human populations. Since the overwhelming majority of human genetic variation is found within populations, these methods are expected to be effective and can likely be extrapolated from one human population to another.(More)
The MDR1 multidrug transporter regulates the traffic of drugs, peptides and xenobiotics into the body as well as sensitive tissues like the brain, germ cells and the developing fetus. Hence, it may influence an individual's response to drugs as well as his/her susceptibility to complex diseases in which environmental factors, especially xenobiotics, play a(More)