Learn More
BACKGROUND The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due(More)
Human immunodeficiency virus-1 (HIV-1) Vif is essential for viral evasion of host antiviral factor CEM15/APOBEC3G. We report that Vif interacts with cellular proteins Cul5, elongins B and C, and Rbx1 to form an Skp1-cullin-F-box (SCF)-like complex. The ability of Vif to suppress antiviral activity of APOBEC3G was specifically dependent on Cul5-SCF function,(More)
APOBEC3G exerts its antiviral activity by targeting to retroviral particles and inducing viral DNA hypermutations in the absence of Vif. However, the mechanism by which APOBEC3G is packaged into virions remains unclear. We now report that viral genomic RNA enhances but is not essential for human APOBEC3G packaging into human immunodeficiency virus type 1(More)
BACKGROUND The internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA is regarded as one of the candidate DNA barcodes because it possesses a number of valuable characteristics, such as the availability of conserved regions for designing universal primers, the ease of its amplification, and sufficient variability to distinguish even closely(More)
APOBEC3G (A3G) and related cytidine deaminases are potent inhibitors of retroviruses. HIV-1 Vif hijacks the cellular Cul5-E3 ubiquitin ligase to degrade APOBEC3 proteins and render them ineffective against these viruses. Here, we report that HIV-1 Vif is a novel zinc-binding protein containing an H-x(5)-C-x(17-18)-C-x(3-5)-H motif that is distinct from(More)
APOBEC3G (A3G) is a single-stranded DNA cytidine deaminase that targets retroviral minus-strand DNA and has potent antiviral activity against diverse retroviruses. However, the mechanisms of A3G antiviral functions are incompletely understood. Here we demonstrate that A3G, A3F, and, to a lesser extent, the noncatalytic A3GC291S block human immunodeficiency(More)
Cullin-Ring E3 ubiquitin ligases target substrates for ubiquitin-dependent, proteasome-mediated degradation and regulate critical cellular processes. These cullins assemble with cellular substrate receptor proteins through specific adaptor molecules. F-box- and BC-box-containing receptors use Skp1, ElonginB, and ElonginC as adaptors to recruit Cul1/Cul7 and(More)
We report a link between Cullin5 (Cul5) E3 ubiquitin ligase and the heat shock protein 90 (Hsp90) chaperone complex. Hsp90 participates in the folding of its client proteins into their functional conformation. Many Hsp90 clients have been reported to be aberrantly expressed in a number of cancers. We demonstrate Cul5 interaction with members of the Hsp90(More)