Learn More
A role of non-reducing sugars like sucrose and raffinose in the protection of plant cells against damage during freezing has been proposed for many species, but reports on physiological effects are conflicting. Non-aqueous fractionation of mesophyll cell compartments in Arabidopsis thaliana was used to show that sucrose and raffinose accumulate in plastids(More)
State-of-the-art optical remote sensing of vegetation canopies is reviewed here to stimulate support from laboratory and field plant research. This overview of recent satellite spectral sensors and the methods used to retrieve remotely quantitative biophysical and biochemical characteristics of vegetation canopies shows that there have been substantial(More)
Drought stress is one of the most important factors that limit crop productivity worldwide. In order to obtain tomato plants with enhanced drought tolerance, we inserted the transcription factor gene ATHB-7 into the tomato genome. This gene was demonstrated earlier to be up-regulated during drought stress in Arabidopsis thaliana thus acting as a negative(More)
Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a(More)
An easy and non-invasive method for measuring plant cold tolerance is highly valuable to instigate research targeting breeding of cold tolerant crops. Traditional methods are labor intensive, time-consuming and thereby of limited value for large scale screening. Here, we have tested the capacity of chlorophyll a fluorescence (ChlF) imaging based methods for(More)
Automatic discrimination of plant species is required for precision farming and for advanced environmental protection. For this task, reflected sunlight has already been tested whereas fluorescence emission has been only scarcely considered. Here, we investigated the discriminative potential of chlorophyll fluorescence imaging in a case study using three(More)
The availability of rapid and reliable tools for monitoring of plants' cold tolerance is a prerequisite for research aimed at breeding of cold-tolerant crop plants. Therefore, we have tested the capacity of metabolomics-based methods employing ultra-high-performance liquid chromatography (UHPLC)-mass spectrometry and direct analysis in real time-mass(More)
Non-invasive and high-throughput monitoring of drought in plants from its initiation to visible symptoms is essential to quest drought tolerant varieties. Among the existing methods, chlorophyll a fluorescence (ChlF) imaging has the potential to probe systematic changes in photosynthetic reactions; however, prerequisite of dark-adaptation limits its use for(More)
Sustainable agriculture for feeding increasing population is a foremost global challenge. The “green revolution” based crop productivity has done wonders in the past, but it has limits, and, thus, we are compelled to look for new avenues to increase productivity of important crops. Plant phenomics is emerging as a promising area in which many imaging(More)
Steady state LIF spectra using 488 nm of cw Ar + laser and 355 nm of pulsed Nd:YAG laser, fluorescence induction kinetics using 488 nm laser light were studied in wheat seedlings exposed to increasing cadmium (Cd) concentrations (0.01, 0.1, 1.0 and 2.0 mM). In addition, some growth parameters and pigment content were also measured. The LIF spectra of the(More)
  • 1