Kumiko Kagawa

Learn More
Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells.(More)
BACKGROUND Multiple myeloma (MM) expands almost exclusively in the bone marrow and generates devastating bone lesions, in which bone formation is impaired and osteoclastic bone resorption is enhanced. TGF-beta, a potent inhibitor of terminal osteoblast (OB) differentiation, is abundantly deposited in the bone matrix, and released and activated by the(More)
BACKGROUND TNF-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) selectively induces apoptosis in various cancer cells including myeloma (MM) cells. However, the susceptibility of MM cells to TRAIL is largely low in most of MM cells by yet largely unknown mechanisms. Because TNF-α converting enzyme (TACE) can cleave some TNF receptor family(More)
Monocytes give rise to macrophages, osteoclasts (OCs), and dendritic cells (DCs). Macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappaB (RANK) ligand induce OC differentiation from monocytes, whereas granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) trigger monocytic differentiation(More)
Bortezomib is a novel proteasome inhibitor that has shown marked antitumor effects in patients with multiple myeloma (MM). We evaluated the feasibility and efficacy of bortezomib plus dexamethasone (BD) therapy and assessed bone metabolism in relapsed or refractory MM. Fourteen patients received 1.3 mg/m2 bortezomib on days 1, 4, 8, and 11 along with 20(More)
Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells.We demonstrate herein that HKII is constitutively over-expressed in MM cells.(More)
The immunomodulatory drug lenalidomide (Len) has drawn attention to potentiate antibody-dependent cellular cytotoxicity (ADCC)-mediated immunotherapies. We developed the defucosylated version (YB-AHM) of humanized monoclonal antibody against HM1.24 (CD317) overexpressed in multiple myeloma (MM) cells. In this study, we evaluated ADCC by YB-AHM and Len in(More)
Bortezomib-induced peripheral neuropathy (BIPN) emerges as a disabling adverse effect. As rat models for BIPN have demonstrated damage in nerve Schwann cells, we screened for cytoprotective agents to devise a method of rescuing Schwann cells from the cytotoxic effects of bortezomib without compromising its anti-myeloma effects. Schwann cells underwent(More)
The spicamycin analogue KRN5500 alters glycoprotein processing and induces damage in the endoplasmic reticulum (ER)-Golgi apparatus in cancer cells. In the present study, we explored the cytotoxic effects of KRN5500 on multiple myeloma (MM) cells and the bone marrow microenvironment with special reference to ER stress. Cell proliferation assay showed that(More)
Transient inflammatory reactions have been reported in a subpopulation of patients with multiple myeloma (MM) during lenalidomide (Len) plus dexamethasone (DEX) therapy. Here, we examined serum levels of Th1 (IL-2 and IFN-γ) and Th2 cytokines (IL-6 and TNF-α) in nine refractory or relapsed MM patients treated with Len plus low-dose DEX. Six patients showed(More)