#### Filter Results:

#### Publication Year

2008

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Organism

Learn More

This study investigates an efficient algorithm for image segmentation with a global constraint based on the Bhat-tacharyya measure. The problem consists of finding a region consistent with an image distribution learned a priori. We derive an original upper bound of the Bhattacharyya measure by introducing an auxiliary labeling. From this upper bound, we… (More)

This study investigates a convex relaxation approach to figure-ground separation with a global distribution matching prior evaluated by the Bhattacharyya measure. The problem amounts to finding a region that most closely matches a known model distribution. It has been previously addressed by curve evolution, which leads to suboptimal and computationally… (More)

We present a discrete kernel density matching energy for segmenting the left ventricle cavity in cardiac magnetic resonance sequences. The energy and its graph cut optimization based on an original first-order approximation of the Bhattacharyya measure have not been proposed previously, and yield competitive results in nearly real-time. The algorithm seeks… (More)

A fundamental step in the diagnosis of cardiovascular diseases, automatic left ventricle (LV) segmentation in cardiac magnetic resonance images (MRIs) is still acknowledged to be a difficult problem. Most of the existing algorithms require either extensive training or intensive user inputs. This study investigates fast detection of the left ventricle (LV)… (More)

This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in… (More)

In most solutions to state estimation problems, e.g., target tracking, it is generally assumed that the state transition and measurement models are known a priori. However, there are situations where the model parameters or the model structure itself are not known a priori or are known only partially. In these scenarios, standard estimation algorithms like… (More)

This study investigates fast detection of the left ventricle (LV) endo- and epicardium boundaries in a cardiac magnetic resonance (MR) sequence following the optimization of two original discrete cost functions, each containing global intensity and geometry constraints based on the Bhattacharyya similarity. The cost functions and the corresponding max-flow… (More)

We present an original information theoretic measure of heart motion based on the Shannon's differential entropy (SDE), which allows heart wall motion abnormality detection. Based on functional images, which are subject to noise and segmentation inaccuracies, heart wall motion analysis is acknowledged as a difficult problem, and as such, incorporation of… (More)

This study investigates regional heart motion abnormality detection using various classifier features with Shannon's Differential Entropy (SDE). Rather than relying on elementary measurements or a fixed set of moments, the SDE measures global distribution information and, as such, has more discriminative power in classifying distributions. Based on… (More)

We state vertebral body (VB) segmentation in MRI as a distribution-matching problem, and propose a convex-relaxation solution which is amenable to parallel computations. The proposed algorithm does not require a complex learning from a large manually-built training set, as is the case of the existing methods. From a very simple user input, which amounts to… (More)