Learn More
Here, we designed a new nano-sized siRNA carrier system composed of biocompatible/biodegradable glycol chitosan polymer (GC) and strongly positively charged polyethylenimine (PEI) polymers. In order to make a stable and tumor-homing nano-sized carrier, each polymer was modified with hydrophobic 5beta-cholanic acid, and they were simply mixed to form(More)
This study reports that tumor-targeting glycol chitosan nanoparticles with physically loaded and chemically conjugated photosensitizers can be used in photodynamic therapy (PDT). First, the hydrophobic photosensitizer, chlorin e6 (Ce6), was physically loaded onto the hydrophobically-modified glycol chitosan nanoparticles (HGC), which were prepared by(More)
The condensed version: Thiolated glycol chitosan can form stable nanoparticles with polymerized siRNAs through charge-charge interactions and self-cross-linking (see scheme). This poly-siRNA/glycol chitosan nanoparticles (psi-TGC) provided sufficient in vivo stability for systemic delivery of siRNAs. Knockdown of tumor proteins by psi-TGC resulted in a(More)
Enhanced drug-loading and therapeutic efficacies are highly essential properties for nanoparticles as tumor-targeting drug carriers. Herein, we developed the glycol chitosan nanoparticles with hydrotropic oligomers (HO-CNPs) as a new tumor targeting drug delivery system. For enhancing drug-loading efficiency of paclitaxel in drug carriers, hydrotropic(More)
Nanoscale fluorescence optical imaging probes are paving the way for novel methods to sense and spot live molecular targets. Various probes have been developed, including semiconductor quantum dots, magnetofluorescent nanoparticles, polymer conjugates, nanocomplexes, and gold nanoparticles (AuNPs). The application of conventional fluorescent probes is(More)
We reported the development of new nanoscale drug carriers, chitosan-based nanoparticles (CNPs) that can be used for photodynamic therapy. These carriers could encapsulate a photosensitizer, protophorphyrin IX (PpIX), and deliver it to tumor tissue. We already reported that CNPs presented the enhanced tumor target specificity in cancer therapy and imbibed(More)
Tumor targetability and site-specific drug release of therapeutic nanoparticles are key factors for effective cancer therapy. In this study, poly(ethylene glycol) (PEG)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) were investigated as carriers for anticancer drugs including doxorubicin and camptothecin (CPT). P-HA-NPs were internalized into cancer(More)
We report here a new protease activatable strategy based on a polymer nanoparticle platform. This nanosensor delivers chemically labeled matrix metalloproteinase (MMP)-activatable fluorogenic peptides to the specific MMPs of interest in vivo. Intravenous administration of the nanosensor in an MMP-positive SCC-7 xenograft tumor and a colon cancer mouse model(More)
Herein, we developed the photosensitizer, protoporphyrin IX (PpIX), conjugated glycol chitosan (GC) nanoparticles (PpIX-GC-NPs) as tumor-homing drug carriers with cellular on/off system for photodynamic imaging and therapy, simultaneously. In order to prepare PpIX-GC-NPs, hydrophobic PpIXs were chemically conjugated to GC polymer and the amphiphilic PpIX-GC(More)
Cathepsin B and matrix metalloproteinase (MMP) play key roles in tumor progression by controlled degradation of extracellular matrix. Consequently, these proteases have been attracted in cancer research, and many imaging probes utilizing these proteases have been developed. Our groups developed cathepsin B and MMP imaging nanoprobes based on polymer(More)