Learn More
We report tumor targeting nanoparticles for optical/MR dual imaging based on self-assembled glycol chitosan to be a potential multimodal imaging probe. To develop an optical/MR dual imaging probe, biocompatible and water-soluble glycol chitosan (M(w) = 50 kDa) were chemically modified with 5beta-cholanic acid (CA), resulting in amphiphilic glycol(More)
We reported the development of new nanoscale drug carriers, chitosan-based nanoparticles (CNPs) that can be used for photodynamic therapy. These carriers could encapsulate a photosensitizer, protophorphyrin IX (PpIX), and deliver it to tumor tissue. We already reported that CNPs presented the enhanced tumor target specificity in cancer therapy and imbibed(More)
Tumor targetability and site-specific drug release of therapeutic nanoparticles are key factors for effective cancer therapy. In this study, poly(ethylene glycol) (PEG)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) were investigated as carriers for anticancer drugs including doxorubicin and camptothecin (CPT). P-HA-NPs were internalized into cancer(More)
Here, we designed a new nano-sized siRNA carrier system composed of biocompatible/biodegradable glycol chitosan polymer (GC) and strongly positively charged polyethylenimine (PEI) polymers. In order to make a stable and tumor-homing nano-sized carrier, each polymer was modified with hydrophobic 5beta-cholanic acid, and they were simply mixed to form(More)
We report here a new protease activatable strategy based on a polymer nanoparticle platform. This nanosensor delivers chemically labeled matrix metalloproteinase (MMP)-activatable fluorogenic peptides to the specific MMPs of interest in vivo. Intravenous administration of the nanosensor in an MMP-positive SCC-7 xenograft tumor and a colon cancer mouse model(More)
Small interfering RNA (siRNA) is a promising biological strategy for treatment of diverse diseases, but the therapeutic application of siRNA has been limited by its instability and poor cellular uptake efficiency. Although the development of various gene delivery systems has increased the siRNA delivery efficiency, many problems still remain to be resolved(More)
The current authors investigated the anatomic geometry of femurs from Korean subjects and compared the results with those of femurs from American and Japanese subjects. Thirty-eight femurs extracted from cadavers and 200 femurs of healthy subjects were used. The 38 femurs were placed on a horizontal plane to obtain computed tomography images, which then(More)
Theragnostic multifunctional nanoparticles hold great promise in simultaneous diagnosis of disease, targeted drug delivery with minimal toxicity, and monitoring of treatment. One of the current challenges in cancer treatment is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report tumor-homing chitosan-based(More)
Tumor-targeted imaging and therapy have been the challenging issue in the clinical field. Herein, we report tumor-targeting hyaluronic acid nanoparticles (HANPs) as the carrier of the hydrophobic photosensitizer, chlorin e6 (Ce6) for simultaneous photodynamic imaging and therapy. First, self-assembled HANPs were synthesized by chemical conjugation of(More)
Cathepsin B and matrix metalloproteinase (MMP) play key roles in tumor progression by controlled degradation of extracellular matrix. Consequently, these proteases have been attracted in cancer research, and many imaging probes utilizing these proteases have been developed. Our groups developed cathepsin B and MMP imaging nanoprobes based on polymer(More)