Learn More
Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMP-activated protein kinase (AMPK) kinase pathway targets several downstream effectors, including(More)
BACKGROUND Ether phospholipids are abundant membrane constituents present in electrically active tissues (e.g., heart and the brain) that play important roles in cellular function. Alterations of ether phospholipid molecular species contents are associated with a number of genetic disorders and human diseases. METHODOLOGY/PRINCIPAL FINDINGS Herein, the(More)
Electrospray ionization mass spectrometry (ESI-MS) has become one of the most popular and powerful technologies to identify and quantify individual lipid species in lipidomics. Meanwhile, quantitative analysis of lipid species by ESI-MS has also become a major obstacle to meet the challenges of lipidomics. Herein, we discuss the principles, advantages, and(More)
Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy(More)
A lysosomal phospholipase A2, LPLA2, was recently characterized and shown to have substrate specificity for phosphatidylcholine and phosphatidylethanolamine. LPLA2 is ubiquitously expressed but is most highly expressed in alveolar macrophages. Double conditional gene targeting was employed to elucidate the function of LPLA2. LPLA2-deficient mice (Lpla2-/-)(More)
Electrospray ionization mass spectrometry (ESI-MS) has become one of the most popular and powerful technologies to identify and quantify individual lipid species in lipidomics. Meanwhile, quantitative analysis of lipid species by ESI-MS has also become a major obstacle to meet the challenges of lipidomics. Herein, we discuss the principles, advantages, and(More)
Service semantic annotation is advancing quickly in recent years. However, the task of yielding semantics knowledge becomes a bottleneck of semantic annotation. In this paper, we present a new method for extracting tags from WSDL files and mining semantic relationships between tags. It is foundation of building ontology, which can be used to annotate web(More)
The regulation and maintenance of the cellular lipidome through biosynthetic, remodeling, and catabolic mechanisms are critical for biological homeostasis during development, health and disease. These complex mechanisms control the architectures of lipid molecular species, which have diverse yet highly regulated fatty acid chains at both the sn1 and sn2(More)
Palmitate, the typical end product released from fatty acid synthase, is of interest to many researchers performing metabolomics. Although palmitate can be readily detected by using mass spectrometry, many metabolomic platforms involve the use of plastic consumables that introduce a competing background signal of palmitate. The goal of this study was to(More)
Psychosine is an important bioactive sphingolipid metabolite and plays an essential role in the pathogenesis of Krabbe's disease. Herein, we extended shotgun lipidomics for the characterization and quantitation of psychosine in alkaline-treated crude lipid extracts by using neutral loss scan of 180 amicro (i.e., galactose) in the positive-ion mode.(More)