Learn More
IL-17-producing CD4(+) T helper (Th17) cells have recently been defined as a unique subset of proinflammatory helper cells whose development depends on signaling initiated by IL-6 and TGF-beta, autocrine activity of IL-21, activation of STAT3, and induction of the orphan nuclear receptor RORgammat. The maintenance, expansion, and further differentiation of(More)
The inflammatory cytokine interleukin (IL)-17 is involved in the pathogenesis of allergic diseases. However, the identity and functions of IL-17-producing T cells during the pathogenesis of allergic diseases remain unclear. Here, we report a novel subset of T(H)2 memory/effector cells that coexpress the transcription factors GATA3 and RORγt and coproduce(More)
CD4+ regulatory T (Treg) cells have a profound ability to suppress host immune responses, yet little is understood about how these cells are regulated. We describe a mechanism linking Toll-like receptor (TLR) 8 signaling to the control of Treg cell function, in which synthetic and natural ligands for human TLR8 can reverse Treg cell function. This effect(More)
4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) was purified from differentiating xylem of loblolly pine (Pinus taeda L.). The pine enzyme had an apparent molecular mass of 64 kD and was similar in size and kinetic properties to 4CL isolated from Norway spruce. The pine enzyme used 4-coumaric acid, caffeic acid, ferulic acid, and cinnamic acid as substrates but(More)
CD4(+) helper and regulatory T (Treg) cells play important but opposing roles in regulating host immune responses against cancer and other diseases. However, very little is known about the antigen specificity of CD4(+) Treg cells. Here we describe the generation of a panel of EBV-encoded nuclear antigen 1 (EBNA1)-specific CD4(+) T-cell lines and clones that(More)
Interleukin (IL) 25 (IL-17E), a distinct member of the IL-17 cytokine family, plays important roles in evoking T helper type 2 (Th2) cell-mediated inflammation that features the infiltrations of eosinophils and Th2 memory cells. However, the cellular sources, target cells, and underlying mechanisms remain elusive in humans. We demonstrate that human Th2(More)
The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) is expressed in all EBV-associated tumors, making it an important target for immunotherapy. However, evidence for major histocompatibility complex (MHC) class I-restricted EBNA1 peptides endogenously presented by EBV-transformed B and tumor cells remains elusive. Here we describe for the first(More)
Ligand screening was utilized to isolate a human cDNA that encodes a novel CpG binding protein, human CpG binding protein (hCGBP). This factor contains three cysteine-rich domains, two of which exhibit homology to the plant homeodomain finger domain. A third cysteine-rich domain conforms to the CXXC motif identified in DNA methyltransferase, human(More)
CpG-binding protein is a transcriptional activator that exhibits a unique DNA binding specificity for unmethylated CpG motifs. CpG-binding protein contains a cysteine-rich CXXC domain that is conserved in DNA methyltransferase 1, methyl binding domain protein 1, and human trithorax. In vitro DNA binding assays reveal that CpG-binding protein contains a(More)
The EBV-encoded nuclear antigen 1 (EBNA1) is required for the maintenance and replication of the viral episome in EBV-transformed human B-lymphoblastoid cell lines. It is expressed in all EBV-associated tumors, making it a potentially important target for immunotherapy. However, this promise has not been realized, because an endogenously processed MHC class(More)