Kuei-Jyum C. Yeh

Learn More
Environmental estrogenic chemicals interrupt endocrine systems and generate reproductive abnormalities in wildlife, especially natural and synthetic estrogenic steroid hormones such as 17beta-estradiol (E2), estrone (E1), estriol (E3), 17alpha-ethynylestradiol (EE2), and diethylstilbestrol (DES). Concentrated animal feedlot operations (CAFOs) are of(More)
Our goal was to develop a fast-screening bioassay to determine dioxin levels in the environmental and biological samples from dioxin-contaminated areas. Our original dioxin-responsive-element (DRE)-driven luciferase bioassay (using Huh7-DRE-Luc cells) was modified by reducing the incubation temperature of the cell culture from 37 to 35°C and by adding(More)
The anion impurities such as SO4(2-), Cl(-), and Cr2O7(2-) commonly present in the spent (hazardous) Cr-etch solutions from color filter manufacturing processes may influence the solutions' regeneration by the electrooxidation of Ce(III) to Ce(IV). This study, therefore, investigated the effects of these anions on Ce(III)/Ce(IV) redox reactions at glassy(More)
Endocrine disrupting compounds are a global concern, owing to their interference with the endocrine system of wildlife. In particular, natural estrogens at concentrations as low as ng/L level can interrupt the endocrine system of many organisms. A constructed wetland is an effective means of removing the residual levels of estrogen. This study investigates(More)
This study investigated regeneration of Ce(IV) from Ce(III) oxidation at 0.05-0.5Acm(-2) in 4M HNO(3) with/without anion impurities (SO(4)(2-) (0.01-0.2M), Cl(-) (0.01-0.08M), and/or Cr(2)O(7)(2-) (0.005-0.016M)) in an undivided cell. Both Ce(IV) yield and current efficiency (CE) were significantly lower in 0.1M than in 1-4M HNO(3) and different on anode(More)
Our goal was to determine dioxin levels in 800 soil samples collected from Taiwan. An in vitro DR-CALUX® assay was carried out with the help of an automated Soxhlet system and fast cleanup column. The mean dioxin level of 800 soil samples was 36.0 pg-bioanalytical equivalents (BEQs)/g dry weight (d.w.). Soil dioxin-BEQs were higher in northern Taiwan (61.8(More)
Humic substance (HS) in sediment can affect hydrophobic organic compound distribution, transportation, bioavailability, and toxicity. This study investigated the HS (BKHS) extracted from sediment and separated it into low molecular humic (LMHS, <1kDa) and high molecular humic substances (HMHS, 1kDa-0.45μm). Nonylphenol (NP), octylphenol (OP), and bisphenol(More)
  • 1