Kuei-Hsien Chen

Learn More
Graphene oxide (GO) is a graphene sheet modified with oxygen functional groups [1] in the form of epoxy and hydroxy groups on the basal plane and various other types at the edges. [1] It exhibits interesting steady-state photolumines-cence (PL) properties. [2–8] For example, low-energy fluores-cence in red to near infrared (NIR) wavelengths (from 600– 1100(More)
BACKGROUND Selecting an appropriate substitution model and deriving a tree topology for a given sequence set are essential in phylogenetic analysis. However, such time consuming, computationally intensive tasks rely on knowledge of substitution model theories and related expertise to run through all possible combinations of several separate programs. To(More)
Band gap opening and engineering is one of the high priority goals in the development of graphene electronics. Here, we report on the opening and scaling of band gap in BN doped graphene (BNG) films grown by low-pressure chemical vapor deposition method. High resolution transmission electron microscopy is employed to resolve the graphene and h-BN domain(More)
The reversible phase transformation is reported from hexagonal to monoclinic structure responding to the intercalation/deintercalation of Na(+) between MnO(2) nanosheets upon potential cycling in aqueous electrolyte via an in situ Raman technique. This structural evolution will influence the Na(+) diffusion process in MnO(2) nanosheets and cause phase(More)
Photocatalytic conversion of carbon dioxide (CO(2)) to hydrocarbons such as methanol makes possible simultaneous solar energy harvesting and CO(2) reduction, two birds with one stone for the energy and environmental issues. This work describes a high photocatalytic conversion of CO(2) to methanol using graphene oxides (GOs) as a promising photocatalyst. The(More)
Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In(More)
We report the optoelectronic device properties of individual Au-silica hybrid nanowires prepared by microwave plasma enhanced chemical vapor deposition. Due to the surface plasmon resonance (SPR) effect the photo-responsivity peak strongly depends on the shape of the embedded gold nanostructures in the silica nanowire in which the shape can be modified by(More)
C-doped ZnO hierarchically porous nanoarchitectures were synthesized in situ on indium tin oxide (ITO) through a counter strategy. The PEC performance of the C-doped ZnO nanoarchitectures in the splitting of water without sacrificial reagents was systematically evaluated for the first time. In comparison to other ZnO-based photoanodes in the literature,(More)
A simple and convenient one-pot synthetic route to directly prepare a self-reductive mesoporous copper-iron-silicate (CuO(x)-Fe-silicate)-based catalyst has been developed. The resultant catalyst is highly active and stable in methanol reforming without needing a pre-reduction procedure.