Kuanping Shang

Learn More
We present the design, fabrication and characterization of athermal nano-photonic silicon ring modulators. The athermalization method employs compensation of the silicon core thermo-optic contribution with that from the amorphous titanium dioxide (a-TiO(2)) overcladding with a negative thermo-optic coefficient. We developed a new CMOS-compatible fabrication(More)
We investigate the athermal characteristics of silicon waveguides clad with TiO(2) designed for 1.3 µm wavelength operation. Using CMOS-compatible fabrication processes, we realize and experimentally demonstrate silicon photonic ring resonators with resonant wavelengths that vary by less than 6 pm/°C at 1.3 µm. The measured ring resonance wavelengths across(More)
We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed(More)
We have developed a simple and scalable graphene patterning method using electron-beam or ultraviolet lithography followed by a lift-off process. This method, with the merits of: high pattern resolution and high alignment accuracy, being free from additional etching or harsh processes, being universal to arbitrary substrates, and being compatible to Si(More)
We discuss titanium dioxide material development for CMOS compatible fabrication and integration of athermal silicon photonic components. Titanium dioxide overclad ring modulators achieved athermal operation (< 0.2 GHz/ o C). 1. Introduction In recent years, the development of high quality optical cladding material with strong negative thermo-optic(More)
We discuss the design and demonstration of highly efficient 1.55 µm hybrid III-V/Silicon semiconductor optical amplifiers (SOA). The optimized III-V wafer stack consists of Al(0.10)In(0.71)Ga(0.18)As multiple quantum wells (MQW) and Al(0.48)In(0.52)As electron stop layers to realize SOAs with high wall-plug efficiency (WPE). We present various designs and(More)